

Performance Evaluation of Live Migration Mechanism in a Private Cloud

Ph.D. student André Phillipe Oliveira apbo@cin.ufpe.br Advisor **Prof. Paulo R. M. Maciel** prmm@cin.ufpe.br

Outline

- Approach Overview
- Requirements Definition
- System Design
- Live Migration (Case of study)
- Next Steps
- High-Level Model Generation
- Future Works

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Requirements Definition

- Problem to solve
- Possible contribution
- System boundaries
- Metrics of interest
- Cloud software
- Modeling software
- Sensitivity analysis technique

Live Migration (Case of study) Next Steps

Model Generation

High-Level

Future Works References

System Design

- Data center
 - Servers configurations
 - Cloud configurations
 - Network devices configurations
 - Select and configure hypervisor
 - Vritual machines configuration

Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

System Design

- Testbed specifications
 - Cluster with 3 servers
 - 1 controller
 - Intel Xeon 3.40GHz (Quad-core processor) 8 CPUs
 - 16Gb RAM
 - Intel VT technology
 - 7200 RPM HD
 - 2 computes nodes
 - Intel Xeon 3.40GHz (Quad-core processor) 8 CPUs
 - 32Gb RAM
 - Intel VT technology
 - 7200 RPM HD
 - 1 switch
 - Gigabit Ethernet

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

System Design

• OpenStack Newton 3.2.1 (CentOS 7 Linux)

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works

References

Live Migration (Case of study)

- Live migration is useful for
 - Load balancing
 - Hardware independence
 - Energy saving
 - Geographic migration
 - many other situations
- Sensitivity analysis with DOE
 - Performed to find out which kind of LM has greater effect on customer service availability and performance during the three LM process

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - 100 samples of each flavor of virtual machines

Flavors	VCPUs	Disk (in GB)	RAM (in MB)
m1.tiny	1	5*	512
m1.small	1	20	1024
m1.medium	2	40	2048
m1.large	4	80	4096
m1.xlarge	8	160	16384

Types
Shared storage-based
Block
Volume-backed

* changed to 5Gb because of image minimal requirement

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Live migration types

LM with shared-storage

LM with volume-backed

LM with block

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Live migration types
 - Shared storage-based
 - The instance has ephemeral (virtual) disks that are located on storage shared between the source and destination hosts.
 - Block
 - The instance has ephemeral (virtual) disks that are **not** shared between the source and destination hosts.
 - Volume-backed
 - Instances use volumes rather than ephemeral (virtual) disks.

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Virtual machine image used in experiment
 - Name: Ubuntu Server 16.04 LTS (Xenial Xerus)
 - File name: xenial-server-cloudimg-amd64-disk1.img
 - File size: 272mb
 - Disk format: QCOW2
 - Arch: amd64

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Results (sample)
 - Hypervisor: KVM
 - Virtualization API: libvirt
 - Instante name: instance-0000011a
 - Command to retrieve the information:
 - virsh domjobinfo instance-0000011a -- completed
 - Result fields collected:
 - Time elapsed
 - Total downtime

Example:	
Example.	
Job type:	Completed
Time elapsed:	4919 ['] ms
Time elapsed w/o network:	4918 ms
Data processed:	505.981 MiB
Data remaining:	0.000 B
Data total:	8.016 GiB
Memory processed:	505.981 MiB
Memory remaining:	0.000 B
Memory total:	8.016 GiB
Memory bandwidth:	107.625 MiB/s
Dirty rate:	0 pages/s
Iteration:	3
Constant pages:	1977424
Normal pages:	124942
Normal data:	488.055 MiB
Total downtime:	60 ms
Downtime w/o network:	59 ms
Setup time:	27 ms

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Results (sample)

flavors	lm_type	mig_time(ms)	downtime(ms)
m1.tiny	shared_storage	3277	52
m1.small	shared_storage	3531	54
m1.medium	shared_storage	4078	60
m1.large	shared_storage	4958	62
m1.xlarge	shared_storage	6738	85

flavor: Flavors are used to define the compute, memory, and storage capacity of nova computing instances.
Im_type: Type of live migration.
mig_time: Migration time in milliseconds.
downtime: Downtime in milliseconds.

High-Level Steps Model Future Works References Generation

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Minitab 7 tool

al Min	iitab - U	Intitle	d							
Eile	<u>E</u> dit	D <u>a</u> ta	<u>C</u> alc	<u>S</u> tat <u>G</u> rap	h E <u>d</u> itor	<u>T</u> ools	<u>W</u> indow	<u>H</u> elp	Assista <u>n</u> t	
100		18	D P	50		🦊 👫	M 🛇	2		5 (
:			7	A 18	1 + V	≓			7	×
S e	ssion									
_	25/04/2017 13:41:31									
Weld	come to	o Min	itab,	press F1	for help					
			*							_
	orksnee	201		62	64			66	67	
+	C1		C2	C3		(.5	60	C/	\square
1										
2				_						
3										
		_								_

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

Case of Study (experimentation)

- Sensitivity analysis with design of experiments (DOE) mechanism
 - Graphs (samples)

ch Requi

Requirements Definition System Design

Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works

References

Next Steps

- High-Level Model Generation
- Performance Model Generation
- Availability Model Generation
- Evaluation Process
- Sensitivity Analisys

System Design Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

High-Level Model Generation

• Reliability Block Diagram (RBD) serie

In which $P_i(t)$ is the realiability or availability of the blocks.

System Design

Live Migration (Case of study)

Next Steps

Model Generation

High-Level

Future Works References

High-Level Model Generation

• Stochastic Petri Nets (SPN)

 $\mathcal{N} = (P, T, I, O, M_0)$ $P = \{p_1, p_2, \dots, p_n\}$ $T = \{t_1, t_2, \dots, t_n\}$ $I \in (\mathbb{N}^n \to \mathbb{N})^{n \times m}$ $O \in (\mathbb{N}^n \to \mathbb{N})^{n \times m}$ $M_0 \in \mathbb{N}^n$

Basic component SPN submodel and details

Transition	Delay	Description	
X_F	MTTF	Component failure event	
X_R	MTTR	Component repair event	
Place	Condition		
X_UP	Component is working		
X DOWN	Component is not working		

 $A_s = P\{\#X_UP > 0\}$

Next Steps

Model Generation

High-Level

Future Works Re

References

High-Level Model Generation

- Live migration process (events) for modeling
 - 1. conductor_migrate_server
 - 2. compute_check_can_live_migrate_destination
 - 3. compute_check_can_live_migrate_source
 - 4. compute_live_migration
 - 5. compute_pre_live_migration
 - 6. compute_post_live_migration_at_destination

- 1. compute.instance.update
- 2. compute.instance.live_migration.pre.start
- 3. compute.instance.live_migration.pre.end
- 4. compute.instance.update (downtime starts)
- 5. compute.instance.live_migration._post.start
- 6. compute.instance.live_migration._post.end
- 7. compute.instance.live_migration.post.dest.start
- 8. compute.instance.update (downtime ends)

System Design

Live Migration (Case of study) Next

Next Steps

Model Generation

High-Level

Future WorksReferences

High-Level Model Generation

• Mercury 4.6.3

Wercury Tool	
File View Evaluate Tools Script Preferences	Help
	1 & &
Project	Results
Project RBD SPN CTMC EFM	

ts System Design

Live Migration (Case of study) Next Steps

Model Generation

High-Level

Future Works References

Future Works

• Hybrid architecture

System Design

Live Migration (Case of study)

Next Steps

Model Generation

High-Level

References

Future Works

Future Works

• Service distributed in containers

References

- Herzog, U. (2001). Formal methods for performance evaluation. In Lectures on Formal Methods and Performance Analysis
- Maciel, P. R., Trivedi, K. S., Matias, R., & Kim, D. S. (2011). Dependability modeling. Performance and Dependability in Service Computing: Concepts, Techniques and Research Directions, 1, 53-97.
- Avizienis, A., Laprie, J. C., & Randell, B. (2001). Fundamental concepts of dependability. Newcastle upon Tyne, UK: University of Newcastle upon Tyne, Computing Science.
- Cassandras, C. G. (1993). Discrete event systems: modeling and performance analysis. CRC.
- Jiang, J., Sekar, V., & Zhang, H. (2012, December). Improving fairness, efficiency, and stability in http-based adaptive video streaming with festive. In Proceedings of the 8th international conference on Emerging networking experiments and technologies (pp. 97-108). ACM.
- JAIN, R. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling. [S.I.]: Wiley, 1991. (Wiley Professional Computing). ISBN 9780471503361.

