
Mercury Tool Manual
v6.0

MoDCS Research Group

[http://www.modcs.org]

CIn - Centro de Informatica UFPE

Cidade Universitaria - 50740-540 - Recife - Brazil

- Tel +55 81 2126.8430 -

December 30, 2024

http://www.modcs.org

Contents

1 Overview 1

1.1 How to Install the Tool . 2

1.1.1 Linux System Requirements . 2

1.1.2 Increasing JVM Memory Allocation . 3

1.2 Graphical User Interface (GUI) . 4

1.2.1 RBD View . 4

1.2.2 FT View . 5

1.2.3 EFM View . 6

1.2.4 SPN View . 7

1.2.5 CTMC View . 8

1.2.6 DTMC View . 9

1.2.7 ET View . 10

1.3 Main Menu . 11

1.4 Main Toolbar . 20

1.5 Drawing Area . 21

2 SPN Modeling and Evaluation 26

2.1 SPN Simulation . 45

2.1.1 Stationary Simulation . 45

2.1.2 Transient Simulation . 53

2.1.3 MTTA Simulation . 61

2.2 SPN Analysis . 65

2.2.1 Stationary Analysis . 65

2.2.2 Transient Analysis . 68

2.3 SPN Structural Analysis . 70

2.4 Token Game . 71

2.5 Sensitivity Analysis . 75

3 RBD Modeling and Evaluation 77

3.1 RBD Reduction . 85

3.2 RBD Evaluation . 88

3.2.1 Evaluation . 89

3.2.2 RBD Experiment . 99

3.2.3 Bounds for Dependability Analysis . 105

3.2.4 Component Importance and Total Cost of Acquisition . 107

i

3.2.5 Structural and Logical Functions . 109

3.2.6 Sensitivity Analysis . 111

4 FT Modeling and Evaluation 113

4.1 FT Evaluation . 126

4.1.1 Evaluation . 127

4.1.2 FT Experiment . 132

4.1.3 Bounds for Dependability Analisys . 136

4.1.4 Component Importance and Total Cost of Acquisition . 140

4.1.5 Structural and Logical Functions . 145

4.1.6 Sensitivity Analysis . 149

4.1.7 Export to RBD model . 152

5 CTMC Modeling and Evaluation 154

5.1 Input Parameters/Definitions . 157

5.2 Metrics . 158

5.3 CTMC Evaluation . 161

5.3.1 CTMC Stationary Analysis . 161

5.3.2 CTMC Transient Analysis . 168

5.3.3 Sensitivity Analysis . 170

6 DTMC Modeling and Evaluation 172

6.1 Input Parameters . 175

6.2 Metrics . 176

6.3 DTMC Evaluation . 178

6.3.1 DTMC Stationary Analysis . 178

6.3.2 DTMC Transient Analysis . 185

6.3.3 Sensitivity Analysis . 187

7 ET Modeling and Evaluation 188

7.1 ET Evaluation . 194

7.1.1 ET Experiment . 194

8 EFM Modeling and Evaluation 197

8.1 Power Load Distribution Algorithm - PLDA . 204

8.1.1 Example of PLDA execution . 206

8.2 Power Load Distribution Algorithm in Depth search (PLDA-D) . 207

8.2.1 Example of PLDA-D Execution . 208

ii

9 Comments 210

9.1 Editing a comment . 212

9.2 Highlighting with comments . 214

9.3 Hiding comments . 216

9.4 Disabling comments selection . 217

10 Mercury Scripting Language 218

10.1 Introduction . 218

10.2 Script Structure . 219

10.2.1 Reserved Words . 221

10.3 Continuous Time Markov Chain . 222

10.3.1 Availability . 223

10.3.2 Reward Metric . 223

10.3.3 Stationary and Transient Probabilities . 224

10.4 Reliability Block Diagram . 225

10.5 Stochastic Petri Nets . 228

10.6 Event Tree . 233

A Syntax of CTMC Measures, Parameters, State Names, and State Rewards 238

B Syntax of SPN Metrics, Guard Expressions, and Arc Multiplicity Dependent on Marking. 240

B.1 GENERAL COMMENTS ABOUT SPN SYNTAX . 242

C EMA Tool. 243

Mercury Scripting Language Cookbook 247

iii

1 Overview

This manual describes the Mercury tool: a software for supporting performance, dependability, and energy flow

modeling in an easy and powerful way. The tool provides graphical user interfaces for creating and evaluating

stochastic Petri nets (SPNs), continuous-time Markov chains (CTMCs), discrete-time Markov chains (DTMCs),

reliability block diagrams (RBDs), fault trees (FTs), energy flow models (EFMs), and event trees (ETs).

Mercury has been developed by MoDCS (Modeling of Distributed and Concurrent Systems) research group at

Informatics Center (CIn) of the Federal University of Pernambuco (UFPE) in Brazil since 2009. Here we describe

a comprehensive overview of the features as well as the steps to create, edit and evaluate the models supported

by the tool. The following is an overview of Mercury’s features:

Mercury

CTMC DTMC EFM FT RBD SPN ET

Stationary Transient Stationary Transient Evaluator Evaluator Evaluator
Analysis

(Stationary and
Transient)

Simulation
(Stationary and

Transient)
Evaluator

Figure 1: Mercury Tool - Features

Mercury has been developed in the Java language, which offers platform independence. The graphical

interface allows modeling of systems using one or more views — RBD, FT, EFM, SPN, CTMC, or DTMC, and ET —

while auxiliary modules (e.g., random variate generator and moment matching) are also available. In this way,

users can choose the view best suited to their needs.

In addition, Mercury provides a feature that allows you to import models created in other programs that use

the ”. TN” standard format (the one used in tools like TimeNet [1]). In addition, there is also an option to export

models created with Mercury to a ”. TN” file that conforms to this standard. All projects developed with Mercury

are saved in a ”.xml” file, which contains all information about the created models.

1

1.1 How to Install the Tool

The first step to installing the latest version of Mercury is to access the URL https://www.modcs.org/?page_

id=2392. There is a license agreement that must be signed and sent to the Mercury developers before the user is

granted access to the download page.

Mercury is available on the MoDCS site in many flavors. There is the Mercury version with the Java runtime

environment (JRE) already configured and there is the version without the JRE. In the first case, the user simply

extracts the files into a folder and runs Mercury. In the version without the JRE, the user has to install and

configure the JRE on their machine. It is important to note that Mercury is not compatible with newer versions

of Java. From version 9 onwards, Java began to adopt a modular architecture called Java Platform Modular

System (JPMS) 1. JPMS radically changed the way systems are developed in Java, and many classes that were

available in earlier versions no longer exist. Because of this, applications that have not yet been ported to this

new architecture will not work properly on Java 9+ versions, which is the case with Mercury. The recommended

version for running Mercury is JRE 1.8.

The Mercury installer contains executable files, a folder with third-party libraries, and a folder with example

models. If the user selects the version with the JRE, there is also a folder with the JRE. Mercury’s memory

footprint is approximately 60 MB, but may increase depending on the size of the models and the type of analysis

performed by the tool. When you start Mercury, the initialization screen shown in Figure 2 is displayed.

Figure 2: Initialization Screen

1.1.1 Linux System Requirements

This subsection describes the minimum Linux system configuration required to run Mercury. Make sure that

the system meets these minimum requirements: 1) Java Runtime Environment (JRE) or Java Development Kit

(JDK) version 1.8; and 2) OpenJFX package. The OpenJFX package is required to run the Fault Tree module. On

1https://www.oracle.com/br/corporate/features/understanding-java-9-modules.html

2

https://www.modcs.org/?page_id=2392
https://www.modcs.org/?page_id=2392

Ubuntu, the administrator can use the following command to install OpenJFX: sudo apt-get install openjfx. The

Fault Tree module is not available if the last condition is not met.

1.1.2 Increasing JVM Memory Allocation

To increase the maximum memory allocated by the Java Virtual Machine (JVM) when running the tool, the

parameter -Xmx must be added to the command used to start Java. This parameter defines the upper limit for

the heap memory of the JVM so that Mercury can process larger models. For example, the command in the file

.bat or .sh should be changed as follows:

java -Xmx1G -jar Mercury.jar

In this example, -Xmx1G configures the JVM to use up to 1 GB of heap memory. The value can be adjusted as

required by replacing 1G with a different size, e.g. 512M (for 512 MB) or 2G (for 2 GB), depending on the available

system memory.

3

1.2 Graphical User Interface (GUI)

Mercury offers seven different views: (i) RBD, (ii) FT, (iii) EFM, (iv) SPN, (v) CTMC, (vi) DTMC, and (vii) ET. In

this section, we briefly describe each of these views. Each formalism has its own section and more details about

each view can be found in the respective section.

1.2.1 RBD View

The Reliability Block Diagram (RBD) is a success-oriented modeling approach and allows the creation of a visual

representation of a system that shows how components contribute to the failure or success of a system. The RBD

view (see Figure 3) provides features for performing reliability and availability analysis for large and complex

systems using blocks. The types of block configurations supported by the tool are series, parallel, and k-out-of-n.

It also provides solution by closed-form equations, so results are usually obtained faster than by simulation

or numerical solutions of other models. In addition, users can add labels and run experiments for a specific

component. When you create a project, the default RBD model is created with an empty block. In the RBD

view, the default RBD model has an empty block named b1. The color of this block is gray, indicating that its

properties have not yet been defined. For more information about the support for RBDs provided by Mercury,

see Section 3.

Figure 3: RBD View

4

1.2.2 FT View

Fault Trees (FTs) and RBDs differ in their purpose. FT is a top-down logical diagram that allows you to create a

visual representation of a system that shows the logical relationships between the associated events and causes

that lead to a system’s failure. When you create a project, a default FT model is created with an empty top event

(see Figure 4). In the FT view, the default model presents a FAILURE top event. This event is called “undefined”

because no event leads to it. See Section 4 for more information about Mercury’s support for FTs.

Figure 4: FT View

As we mentioned earlier, you need to install the JavaFX package to make the Fault Tree module avail-

able on Linux-based distributions. You can download it from the following URL https://www.oracle.com/

technetwork/pt/java/javafx/downloads/index.html or install it from a Linux terminal. For Microsoft

Windows systems, no additional packages need to be installed.

5

https://www.oracle.com/technetwork/pt/java/javafx/downloads/index.html
https://www.oracle.com/technetwork/pt/java/javafx/downloads/index.html

1.2.3 EFM View

The Energy Flow Model (EFM) view provides functionality to calculate sustainability and cost estimates for data

center power and cooling infrastructures, taking into account the energy constraints of individual devices. EFM

models represent the flow of energy between system components in terms of their respective efficiency and the

maximum energy each component can deliver (for electrical devices) or the maximum cooling capacity (for

cooling devices). Figure 5 represents an example of an EFM model. See Section 8 for more information about

the support Mercury provides for EFMs.

Figure 5: EFM View

6

1.2.4 SPN View

With respect to stochastic Petri nets, Mercury allows evaluations to be performed by simulation or numerical

analysis (i.e., numerical solution of the underlying Markov chains). Both types of evaluations allow the com-

putation of transient and stationary metrics. Time-dependent metrics are obtained by performing transient

evaluations, while stationary metrics are obtained by performing stationary evaluations. Figure 6 shows the SPN

view with an SPN model as an example. See Section 2 for more information about Mercury’s support for SPNs.

Figure 6: SPN View

7

1.2.5 CTMC View

The CTMC view provides features for drawing and evaluating continuous-time Markov chains (see Figure 7).

Numerical solutions of CTMCs can be performed by stationary or transient analyzes. There are two methods

for computing stationary metrics: GTH (Grassmann-Taksar-Heyman) and Gauss-Seidel. Transient metrics are

calculated by default using the ”Uniformization” method (also known as Jensen method), but the user can also

use the ”4th-order Runge Kutta” method. Sensitivity analysis is also available in the CTMC view. The rate of each

state transition can be defined using polynomial expressions related to user-defined variables (referred to as

parameters/definitions on Mercury). Parameter names may contain Greek letters. In addition to states and

transitions, users can also define reward rates associated with states. In such a case, CTMCs become Markov

reward models. For models with absorbing states, Mercury also allows users to calculate the probability of

absorption and the mean time to absorption. The user can create custom metrics by formulating expressions

that can contain state probabilities. Parameters and metrics can be easily viewed and modified in the CTMC

editor. For more information on the support Mercury provides for CTMCs, see Section 5.

Figure 7: CTMC View

8

1.2.6 DTMC View

The DTMC view provides features for drawing and evaluating discrete-time Markov chains (see Figure 8).

Numerical solutions of DTMCs can be performed by stationary or transient analyzes. There are two methods for

computing stationary metrics: GTH (Grassmann-Taksar-Heyman) and Gauss-Seidel. The parameter names may

contain Greek letters. For models with absorbing states, Mercury also allows the calculation of the absorption

probability and the mean time to absorption. The user can create custom metrics by formulating expressions

that refer to state probabilities. Parameters and metrics can be easily viewed and modified in the DTMC editor.

For more information about the support Mercury provides for DTMCs, see Section 6.

Figure 8: DTMC View

9

1.2.7 ET View

The ET view provides features for drawing and evaluating Event Trees (see Figure 9). Event Trees offer an easy

way to draw event-based models. An ET is composed of nodes, which represent the events of the model, and

transitions between nodes, which represent the probability of the corresponding event. Section 7 details ET

modeling.

Figure 9: ET View

10

1.3 Main Menu

Mercury’s main menu is shown in Figure 10. As we can see, Mercury has seven main menu items. Some menu

items in each main menu item have keyboard shortcuts associated with them. To illustrate this, Figure 11 shows

the options available in the File menu.

Figure 10: Main Menu

Figure 11: Menu File

Next, we describe the options available in the File menu.

• New. Create a project. When you create a project, all modeling views are made available and initialized

empty, except for the RBD, FT and ET views, which each start with a default component with no probability

assigned. Shortcut: Ctrl + N

• Open. Open a project. Mercury only allows you to open files in the Mercury project file format with the

”.xml” extension. However, Mercury allows importing models created in other engines that use the ”. TN”

standard format. Select the option ”Import TN File” to import files in this format. Shortcut: Ctrl + O

• Open Recent. Here you can see a list of the twenty-five latest projects.

• Save. Save the latest project changes to the current file or to a new file for a new project. When you save a

project for the first time, a window appears where you can select a location and enter a name for the file to

be created. Shortcut: Ctrl + S

• Save As. Save the current project to a new file by specifying a new location and name for the file. Shortcut:

Ctrl + Shift + S

11

• Import TN File. Import files in the ’‘.TN” standard. Shortcut: Ctrl + I

• Export TN File. Export the project to a file in the ’‘.TN” standard. Shortcut: Ctrl + E

• Close. Close to tool. Shortcut: Ctrl + Q

Let us now describe the View menu (see Figure 12). In this menu the user can show/hide the views provided

by the tool: RBD, FT, EFM, SPN, CTMC, DTMC and ET. Figures 13 and 14 show the main window with the seven

views visible and hidden respectively.

Figure 12: Menu View

Figure 13: Mercury with the Seven Views Visible

12

Figure 14: Mercury with the Seven Views Hidden

Let us now describe the Evaluate menu (see Figure 15). This menu contains a menu group for each formalism

supported by the tool. A menu group is only active when the corresponding model view is active in the main

window. The menu items available in each menu group for each formalism are described in the following

sections.

Figure 15: Menu Evaluate

Next, we describe the options available in the Tools menu (see Figure 16).

EMA Tool. An Expectation-Maximization Auto-fitting (EMA) algorithm is a fundamental technique for parame-

ter estimation in statistical models when handling clustered data. The EMA tool implements an algorithm

that provides a robust approach to parameter estimation in complex models. It is suitable for scenarios

where data points have unknown probabilities of belonging to different clusters and these clusters follow

known distributions with unknown parameters. The main goal of the EMA tool is to iteratively estimate

the parameters for each cluster such that they maximize the likelihood of the observed data. This itera-

tive process starts with the initial parameter values, computes the posterior probabilities, optimizes the

13

Figure 16: Menu Tools

parameters, and repeats until convergence, i.e., until the change in the incomplete log-likelihood is less

than a predefined threshold. The EMA tool supports two types of evaluations: simple and random search.

In simple evaluation, the user specifies the punctual values to be considered for the number of clusters

and number of phases parameters (see Figure 18). In random search evaluation, the algorithm tries to

find the number of clusters and phases that provide the best convergence considering the minimum and

maximum acceptable values for each parameter (see Figure 19). The plot shows how the model fits the

actual data (see Figure 20). This allows users to assess how well the model describes the behavior of the

data. The tool can also extract expressions from the fitting (see Figure 21). The EMA tool has applications

in clustering, density estimation, and probabilistic modeling. See Section C for more information.

Figure 17: The Expectation Maximization Auto-fitting Tool

RVG stands for Random Variate Generator. A module to support the generation of random numbers, providing

a large number of probability distributions. Statistical summaries considering the generated numbers are

also provided, such as standard deviation, variance, mean, skewness, and kurtosis (see Figure 22). Results

can be exported for supporting analyzes using other software. RVG is used by the SPN simulator, which

supports the evaluation of models with non-exponential times.

14

Figure 18: EMA - Simple Evaluation

Figure 19: EMA - Random Search

Moment Matching [2]. Supports estimates of which exponential-based probability distribution best fits the

mean (first moment) and standard deviation (second moment) of an empirical distribution (see Figure 23).

By supporting numerical evaluations of metrics for models that have non-exponential times associated

with them.

MTTR/F Calculator. Enables calculation of MTTR (mean time to repair) and MTTF (mean time to failure) using

the availability and reliability curves as input parameters. Reliability is a time-dependent metric that

indicates the probability of something working under certain conditions over a given period of time.

System reliability R(t) can be defined as follows [3]:

15

Figure 20: An EMA Fitting Result

Figure 21: Expressions from an EMA Evaluation

R(t) = exp
[t∫

0

λ(t)d t
]

where λ(t) corresponds to failure rate over time t . However, if λ(t) is constant, reliability can be evaluated

as,

R(t) = e−λt .

For instance, by supposing the system failure rate is 0.5[h−1], then reliability curve should be the following

(see Figure 15):

MTTF and MTTR can be calculated by using the following expressions [3]:

16

Figure 22: RVG Module

Figure 23: Moment Matching

MT T F =
∞∫

0

R(t)d t

MT T R = MT T F

avai l abi l i t y
−MT T F

Figure 25 shows the MTTR/F Calculator window where users should specify Availability and a CSV file

without headers and with two columns to specify the evaluation time and reliability value. Using the File

button we can refer to a file containing time and reliability values.

After specifying the parameters, the user should calculate the results by pressing the Calculate button.

17

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

R(t) = e−0.5t

t in hours

R
(t

)

Figure 24: Reliability Over Time

Figure 26 shows an example of a result obtained by calculating MTTR and MTTF values. For a more

detailed example, see the following video https://youtu.be/Hmu5DX3CJCg.

Figure 25: MTTR/F Calculator

Figure 26: MTTR/F Calculator Result

Evaluate External RBDs. Module that allows us to calculate availability metrics for external RBD files created

according to a specific format.

Generate Random Numbers. This module allows us to generate random numbers that follow a certain proba-

bility distribution. It supports a large number of probability distributions. First, the user must enter the

size of the sample and select the probability distribution that will guide the generation of the numbers.

After that, you need to specify the value for each parameter of the selected distribution. Before you start

18

https://youtu.be/Hmu5DX3CJCg

generating numbers, you need to select the location where the file with the generated sample will be

saved.

Export Model to Mathematica/Sage. This feature exports SPN/CTMC models to Wolfram Mathematica lan-

guage/SageMath format (see Figure 27). When exporting to Mathematica, Mercury creates the nb file to

be opened in Mathematica.

Figure 27: Export model to Mathematica/Sage

Let us now describe the menu “Script” (Figure 28). In this menu, the user can generate the representation

of the active model in the scripting language format or create a script from scratch. Clicking the ”Generate

script” menu converts the active model into a script so that it can be evaluated and modified in the script editor.

Figure 29 shows the script editor with a script representation of an SPN model. Mercury also provides scripts as

examples. To open them, simply click on the menu item representing the script and it will open in the script

editor. See Chapter 10 for more information about the Mercury scripting language and its grammar.

Figure 28: Menu Script

19

Figure 29: Script Editor

1.4 Main Toolbar

The main toolbar provides access to some of the most commonly used features in Mercury, such as creating

or saving a project. It appears at the top of the main window, just below the menu bar. Figure 30 shows the

command buttons on this toolbar, each represented by an icon. The following items describe each of the buttons.

Figure 30: Main Toolbar

1. New. Create a project. Shortcut: Ctrl + N

2. Open. Open a project. Shortcut: Ctrl + O

3. Save. Save project changes to the current file or to a new one in case of a new project. Shortcut: Ctrl + S

20

4. Save As. Save the project to a new file. Shortcut: Ctrl + Shift + S

1.5 Drawing Area

Mercury supports seven formalisms and provides a modeling view for each of them — RBD, FT, EFM, SPN,

CTMC, DTMC and ET. It also provides another view to display the results produced by the simulators. Click on

the View tab in the main window to activate the respective visualization. Views can be made visible and invisible.

To do this, the view must be checked or unchecked on the View menu.

The drawing area is an empty area where you can add components for a formalism. To add a component,

you usually have to click on a button that represents the component in the toolbar. After that, you must click on

the desired location within the canvas to insert the selected component there — except for RBDs, ETs and Fault

Trees. Figure 31 shows the drawing area of the SPN view.

21

Figure 31: SPN Drawing Area

On the left side of the main window, there is a tab for each formalism, as we can see in Figure 32. When

you access these tabs, all the components that make up the current model are displayed. You can access a

component’s properties by double-clicking on it. In this example, the SPN tab is active. Each time a component

is inserted into the drawing area or one of its properties is updated, the panel on the left is also updated.

Figure 32: Left-Side Panel

The editor provides smoother handling of components on the canvas, allowing users to move and position

elements effortlessly. It provides visual assistance through vertical and horizontal alignment lines when adding,

resizing, or moving components on the canvas, ensuring precise alignment (Figure 33). In addition, users can

fine-tune component positioning with the keyboard arrow keys for precise control over element placement.

22

Mercury also allows the user to right-click and select “Enable Grid” option or press the CTRL + G keys to activate

and deactivate grid mode. When active, this mode draws several lines on the canvas to help align components,

as shown in Figure 34. These features give the user complete control over layout and positioning, improving the

presentation of the model. In addition to that, the user can also right-click and select “Enable Snap to Grid” or

press CTRL + H keys to activate and deactivate snap to grid mode. When active, this mode allows objects to be

be moved in steps based of the grid.

Figure 33: Editor Showing Alignment Lines

Figure 34: Grid Lines

Mercury supports the creation of projects that allow the creation of multiple models of the same formalism

in a single file. A new model is created by clicking the ”+” button under the tab of the selected formalism, as

shown in Figure 35. A new tab will then be created (see Figure 36). The user also has the option to rename,

23

remove or duplicate the model. These options are available from the popup menu that appears when the model

tab is right-clicked (see Figure 37). If the user chooses the ”Rename” or ”Duplicate” option, the new name of the

model can be entered in the dialog (see Figure 38).

Figure 35: Adding a New Tab

Figure 36: SPN with Two Models

Figure 37: Popup Menu for Tabs

Figure 38: Renaming a Model

Mercury now supports drag-and-drop rearrangement of model tabs. This allows you to customize the layout

of your workspace by simply clicking on a tab and moving it to the desired location (see Figure 39). By allowing

tabs to be rearranged at will, the feature improves control over the workspace so that it is better tailored to the

user’s specific needs and improves the overall user experience. This feature is especially valuable for projects

where users frequently work with multiple models and need a flexible way to keep everything well organized

and easily accessible.

24

(a) Before

(b) After

Figure 39: Tab Reordering with Drag and Drop

25

2 SPN Modeling and Evaluation

Mercury is a complete tool for modeling SPNs. In the SPN view, users can create models by adding components

such as places and transitions. Figure 40 shows a model with two transitions — one timed and one immediate

—, and two places. Below we describe the process of modeling SPNs with Mercury.

Figure 40: SPN Model

Figure 41 shows the SPN toolbar. Some buttons on the SPN toolbar are used to model SPNs. This toolbar is

visible when the SPN view is active. In the following we describe each button.

Figure 41: SPN Toolbar

1. Selection.

Turns on the selection mode. This mode allows you to select components on the drawing area.

When this mode is enabled, you can select more than one component in the drawing area by

holding down the SHIFT key while clicking on the components. Another way to select a group

of components is to create a selection area. A selection area is created by holding down the left

mouse button while moving the mouse. All components that are in this area will be selected. Also

in this mode, arcs can be created between places and transitions when pointing at the center of

the place/transition and moving to a transition/place.

26

2. Just move elements.

Turns on the just move elements mode. This mode allows you to only select and move compo-

nents on the drawing area. When this mode is enabled, you can select and move more than one

component in the drawing area by holding down the SHIFT key while clicking on the components.

Another way to select a group of components is to create a selection area. A selection area is

created by holding down the left mouse button while moving the mouse. All components that are

in this area will be selected. Creating arcs is not possible in this mode.

3. Place.

Adds places to the model.

Users should click on the “Place” button and then click on the desired location into the drawing

area.

By default, new places do not have tokens.

4. Immediate Transition.

Inserts immediate transitions into the model.

Users should click on the “Immediate Transition” button and then click on the desired location

into the drawing area.

5. Deterministic Transition.

Inserts deterministic transitions into the model.

Users should click on the “Deterministic Transition” button and then click on the desired location

into the drawing area.

6. Exponential Transition.

Adds exponential transitions to the model.

Click the “Exponential Transition” button and then click the desired location in the drawing area.

7. Non-Exponential Transition.

Adds non-exponential transitions to the model.

Users should click on the “Non-Exponential Transition” button and then click on

27

8. Definition.

Adds definitions to the model. Click the ”Definition” button, and then click the desired location

in the drawing area. A definition is a variable that stores a numeric value. It may be associated

with some properties of other SPN components. In this case, Mercury takes into account the

current value of the definition for the property being referenced. References are made by entering

the name of the definition as the value of the property or within an expression. Definitions can

be associated with markings for places, priorities and guard expressions for transitions, distri-

bution parameters for exponential transitions, weights for immediate transitions, multiplicity

expressions for arcs, and expressions for metrics. More than one property can refer to the same

definition. Definitions are useful to support experiments. In this case, by changing the value of a

definition, you can evaluate the effect of that change on a metric.

9. Metric.

Adds metrics to the model. Click the “Metric” button and then click the desired location in the

drawing area. Basically, a metric is an expression used to evaluate a property of the model. A

metric can be useful for evaluating whether a certain state has been reached or how much time it

took to perform a certain activity.

10. Comment.

Adds comments to the model. Click the “Comment” button and then click the desired location in

the drawing area. Then, double-click the comment element to edit the comment, allowing you to

add LaTeX expressions, or remove any text and keep the borders to create a dashed rectangle to

highlight objects. This is detailed in Section 9.

11. Hide Comments.

Hides comments in the model. Click the “Hide Comments” button to hide all comments shown

in the model. Clicking the button again shows the comments in the model. This is detailed in

Section 9.3.

12. Disable Comments Selection.

Disables comments selection in the model. Click the “Disable Comments Selection” button to

avoid comments from being selected, moved, or edited. Thus, only the model’s elements will be

selectable, movable, or editable. This is detailed in Section 9.4.

28

13. Show/Hide Arcs Labels.

Hides/shows the labels above the arcs. This type of label indicates the multiplicity of the arc. The

multiplicity of arcs indicates how many tokens are consumed or generated at certain places. In

the case of inhibitor arcs, it indicates how many tokens a place must have for a transition not to

activate.

14. Turn Default/Inhibitor Arc Mode On/Off.

This button allows you to select the type of arc to be used to connect transitions and places. You

can choose between two types of arcs: standard and Inhibitor arcs. Inhibitor arcs may only be

used to connect places with transitions. When you create a new project, the standard arc is active

by default.

15. Undo.

Undo recent changes from the model.

All recent changes are stored and can be rolled back, one after another.

Shortcut: Ctrl+Z

16. Redo.

Redo recent changes undone to the model.

Shortcut: Ctrl+Y

17. Remove.

Removes selected components from the model. If you select a group of components, all com-

ponents will be removed by clicking this button. You can also delete components by pressing

DEL or right-clicking the selected component and choosing ”Remove”. If you remove a place or a

transition, its arcs will also be removed.

18. Default Scale.

Apply standard scale to the drawing area.

19. Scale Up.

Each click scales the drawing image up by 10% percent (zoom in).

29

20. Scale Down.

Each click scales the drawing image down by 10% percent (zoom out).

21. Token Game.

Token Game is a feature that allows us to evaluate graphically the behavior of an SPN model. By

turning the Token Game on, transitions enabled for the current marking will be highlighted, and

the user can double-click on one of them in order to fire it. By firing, a new marking is reached,

and, depending on that, new transitions may become enabled and others become disabled. By

continuing this firings process, it is possible to check whether the model behaves as expected.

22. Export to PDF.

This feature allows users to export their models to PDF files.

Now let us look at the interaction within the drawing area. When you right-click on an SPN component, a

popup menu appears. All components have a popup menu associated with them that contains at least two

items:

• Remove. Removes the selected component from the model.

• Properties. Displays the ”Properties” dialog box, where the user can change the properties of the selected

component.

Figure 42 shows the pop-up menu for transitions.

Figure 42: Popup Menu of Transitions

This menu displays three menu items. Rotation is an action available only for transitions.

• Rotation. Rotates the selected transition. Transitions can be positioned horizontally or vertically. Figure 43

shows an immediate transition in horizontal position. All arcs of the transition are readjusted when it is

rotated.

30

Figure 43: An Immediate Transition Positioned Horizontally

Let us now describe the properties of timed transitions. To view them, you should right-click on the respective

transition, as shown in Figure 42, and then click on the ”Properties” item. Another option is to double-click

on the timed transition. A third way is to double-click on the transition’s representation on the left side of the

window. All roads lead to Rome. It is important to emphasize that this last option is available for all components

of the model. Figure 44 shows the properties of a timed transition.

Figure 44: Properties of Timed Transitions

Next, we describe each one.

• Name. Name for the transition. It is used to identify the component in the model. Mercury accepts only

alphanumeric characters and underscores. Also, the name must start with an alpha character. If this rule

is not followed, an error occurs. Also, it is not possible to assign a name that is already used by another

component of the same type.

31

• Priority. Firing priority assigned to the transition. The higher the priority, the higher the priority in firing.

It is important to emphasize that immediate transitions always have priority over timed transitions.

• Guard Expression. A Boolean expression that allows a transition to be activated and fired. Apart from the

fact that the current marking allows it, a transition is activated and can be fired only if the guard expression

assigned to it evaluates to true.

The current version of Mercury does not support floating-point literal in the guard expression. Figure 45

shows an example of how this occurs. To overcome this limitation, it is necessary to insert a definition/-

variable with the floating point value. In our example, we have defined a double definition named X. Once

created, the definition can be referenced in a guard expression, as shown in Figure 46. We are working on

solving this issue and will release a new version once this issue is solved.

Figure 45: Error when Using Floating-Point Literal in Guard Expressions

32

Figure 46: Solution to Refer Floating Values in Guard Expressions

• Server Type. The firing semantic assigned to the timed transition. The user can choose one of the two

available options. These options are single server semantic (SSS) and infinite server semantic (ISS). In SSS,

a transition only becomes enabled and can fire only once every instant. In ISS, the number of tokens in

the input places of a transition defines the enabling degree for that transition. The enabling degree defines

the degree of parallelism of the transition.

• Description. Each component of the model can be assigned a description. It contains additional informa-

tion about the component or about the real component/subsystem/action represented by the component.

The description aims to improve the understanding about the model being created. It has no semantic

value in evaluating the model. It is just plain text attached to a component.

• Probability Distribution. Mercury supports a large number of probability distributions. If all timed

transitions are exponential, the model can be evaluated by numerical analysis or simulation. On the

other hand, if there is at least one non-exponential timed transition, the model can only be evaluated by

33

simulations. Depending on the selected distribution, fields appear for the parameters of this distribution,

in which the user can enter the values. Only non-negative real values may be entered for each parameter.

Mercury supports the following probability distributions:

– Beta

– Binomial

– Burr

– Cauchy

– Chi-squared

– Deterministic

– Discrete Uniform

– Erlang

– Exponential

– F Fisher–Snedecor

– Frechet

– Gamma

– Generalized Extreme Value

– Generalized Pareto

– Geometric

– Hypergeometric

– Logistic

– Log-logistic

– Log-normal

– Nakagami

– Normal

– Pareto

– Pearson Type 6

– Poisson

– Rayleigh

– Student’s t-distribution

– Triangular

– Uniform

34

– Weibull

Some probability distributions require only one parameter called ”Delay” which corresponds to the delay

in triggering the transition. In addition to the delay, other parameters may be required depending on

the distribution chosen. For example, the exponential distribution requires only the mean delay. The

Erlang distribution, on the other hand, requires two parameters: mean delay and shape. The normal

distribution requires two parameters: mean and standard deviation. Each probability distribution has its

own parameters that must be entered by the user before performing any evaluations.

Now, we describe the properties of immediate transitions (see Figure 47).

Figure 47: Properties of Immediate Transitions

Following we describe each one. For the sake of conciseness, we will describe only those properties that we

have not yet described.

• Name. Name for the immediate transition. It is used to identify the transition in the model.

• Priority. See page 25.

• Weight. Weight of the transition.

• Guard Expression. See page 25.

35

• Description. See page 26.

Now, let us see the properties of places (see Figure 48).

• Name. Name for the place. It is used to identify the component in the model.

• Marking. The number of tokens assigned to the place. Only non-negative integer values may be entered.

It is possible to append an integer definition to the marking property once the definition has been created.

To do this, the user only needs to enter the name of the definition in this field.

• Description: See page 26.

Figure 48: Properties of Places

Figure 49 shows the pop-up menu of arcs.

Figure 49: Menu of Arcs

This menu contains four menu items. “Insert break” and “Adjust the line style to...” are items specifics for

arcs.

36

• Insert Break. Inserts a break point at the clicked location. If you click on the break point and keep the

mouse button pressed, you can move this point to the desired position. This way you can change the

shape of the arc.

• Adjust the line style to rectangular/curved line. Mercury supports two line styles for arcs: rectangular

and curved. The curved line style is the default style. To switch to the rectangular style, simply click the

appropriate menu item for the selected arc. Figure 50 shows an SPN with a rectangular arc and Figure 51

shows an SPN with a curved arc.

Figure 50: SPN with a Rectangular Arc

Figure 51: SPN with a Curved Arc

Figure 52 shows the properties of arcs. As we can see, arcs only have one property:

• Multiplicity: Multiplicity of the arc, that is, the weight for that arc. It represents the number of tokens

required if the arc is an output arc of a place, or it represents the number of tokens generated in a place if

the arc is an input arc to that place.

In some dialog boxes we see a button with an ellipsis as its description. This button is always next to a text

box, as highlighted in Figure 53.

Clicking this button opens the Expression Editor (see Figure 54).

The expression editor is a text editor that allows you to easily create expressions to define guard expressions

and metrics. It is a simple editor that highlights parentheses, brackets, and braces and some keywords. The

editor has a button to reduce the font of the text and another one to enlarge it. This makes it easy to define even

large and complex expressions.

37

Figure 52: Properties of Arcs

Figure 53: Accessing the Expression Editor

Figure 54: Expression Editor

38

Now let us take a look at the properties of the ”Definition” component. We have already described this

component on page 21. When you access the properties of a definition, the dialog box shown in Figure 55 is

displayed. Below we describe each property of this component.

Figure 55: Properties of Definitions

• Name. Name for the definition. It is used to identify the definition in the model.

• Value. Value represented by the definition.

• Type. A variable can store two types of numeric values: Integer and Double. When you set the properties

of a definition, you must select the appropriate type for the value entered. If you select the INT type and

enter a Double value, an error occurs.

• Description. See page 26.

39

An important point to note is that definitions are variables that store numeric values, as we mentioned earlier

in this section. A definition cannot reference another definition, but it can be referenced by other components of

other types. When you update the properties of a definition, a confirmation dialog appears if it is referenced by

other components. If the definition is referenced and the values entered in the fields are valid, the corresponding

properties will be updated accordingly. Figure 56 shows what happens when the user tries to update a referenced

definition.

Figure 56: Confirmation to Update the References to a Definition

As we can see, all found references to the definition are displayed. The user must confirm to update the

definition and all properties of other components that reference it. If you cancel the operation, the definition

will not be updated. This behavior is intended to prevent the model from becoming corrupted. If you reference

a definition that does not exist or store an invalid value for the property, no evaluations can be performed.

Figure 57 shows the update log that is displayed after the update operation finishes successfully.

40

Figure 57: Updating References to a Definition

In this dialog the user can see if all references have been updated successfully. If errors occur during this

process, they are displayed in the log. An example of an error occurring is when a definition of INT has been

defined with a positive integer value and is referenced by the marking property of a place. If you change the type

of the definition to DOUBLE or enter a negative value, the new value of the definition will not be included in the

marking property. As is known, it is not possible to define a negative integer value as a marking, so the new value

will not be accepted. In such cases, the properties that are referenced are set to their default values, as we can

see in Figure 58.

41

Figure 58: References Updating with Errors

When removing a definition, the same confirmation dialog is displayed as we can see in Figure 59. When the

user confirms the removal, all properties referencing the definition are set to their default values (see Figure 60).

Figure 59: Confirmation to Remove a Definition

42

Figure 60: Invalid References are Removed

Now let us take a look at the properties of the component ”Metric”. We have already described this component

on page 21. When you access the properties of a metric, the dialog box shown in Figure 61 opens. Below we

describe each property of the metric.

Figure 61: Properties of Metrics

• Name. Name for the metric. It is used to identify the metric in the model.

• Expression. Expression evaluated by performing analyzes or simulations. The expression can be used,

for example, to obtain the state of the model at a given time or the time to perform an activity. In the

appendices you can find the syntax for creating simple and complex expressions.

• Value. Stores the value of the metric obtained from the last analysis or simulation.

• Description. See page 26.

Mercury has a feature that enhances both the usability of the tool and the readability of the models. Once an

SPN component is inserted, you can read its properties on the drawing area by placing the mouse pointer over

43

it. A tooltip will then appear showing all the properties of the component. As we can see in Figure 62, all the

properties of a transition appear in the tooltip. Mercury provides this feature for all components of all supported

formalisms.

Figure 62: Tooltip for a Transition

Mercury provides for evaluations of SPN models, analyzes and simulators. Steady-state and transient metrics

can be evaluated for both. These features can be found in the ”Evaluate” menu under the ”SPN Evaluation”

option. They can also be accessed by clicking on the command buttons on the main toolbar (see Figure 63).

Next, we will introduce the simulators and then the analyzes.

Figure 63: SPN Menu

44

2.1 SPN Simulation

Models with non-exponential transitions can only be evaluated by simulations. Mercury provides two types

of simulators. The stationary simulator provides steady-state metrics and the transient simulator provides

time-dependent metrics. We will introduce the stationary simulator below and describe the transient simulator

in the next section.

2.1.1 Stationary Simulation

Figure 64 shows the input parameters for the stationary simulator. These parameters are detailed below.

Figure 64: Stationary Simulator

• Confidence Level. The confidence interval for obtaining the metrics.

• Max. Relative Error %. Defines the maximum relative error in order to stop the simulation.

• Min. firing for each Transition. Sets the minimum number of firings for each transition. This is another

condition to stop the simulation. If you enter a value greater than 0, the simulation will not stop until the

number of firings for each transition is equal to or greater than the defined value and the error criteria has

been reached or the maximum elapsed time has been reached, if defined. If you enter the value “0” for

this input parameter, the simulator will not consider this stopping condition.

• Min. Warm-up Time. Defines the minimum warm-up period. The warm-up phase is the period when the

model is not in steady state and no metrics are collected during this period. There are some methods to

support evaluation of when the model enters steady state, but Mercury requires the user to define the

45

period of the transient phase. We plan to implement some estimation methods in future versions to detect

the end of the transition phase. Since we are evaluating stochastic models, it is expected that the warm-up

period is not a deterministic value when a series of simulations are performed. Therefore, the user defines

a minimum warm-up time. Once the global simulation time is equal to or greater than the user-defined

warm-up time, the simulation starts generating batches, collecting metrics, and calculating statistics.

• Batch Size. Defines the number of samples that will compose each batch in the simulation.

• Min. Simulation Time (sec). This time corresponds to physical time and must be expressed in seconds.

This time can help us perform simulations in cases where the model may have rare events. Rare events

occur when the difference between the delays assigned to the transitions is huge. Rare events may be the

reason why there is no variation in the simulation error. Therefore, the simulator cannot proceed with the

simulation by estimating the required number of batches to achieve the desired relative error. Entering a

minimum simulation time prevents the simulator from stopping the simulation if the initial number of

batches has no variation in the error. If you enter a value greater than 0, the simulation will stop if the

global time is greater than this time and the simulation error is less than or equal to the relative error, or

if other stop conditions are met. If there is no change in error until the minimum time is reached, the

simulation will stop. If you set the value 0 for this parameter, this stop criterion will not be considered.

• Max. Simulation Time (sec). It is used to define the maximum time of a simulation. This time corresponds

to the physical time and must be specified in seconds. If one of the stopping conditions is not met before

this time is reached (minimum simulation time, maximum relative error and number of firings for each

transition), then the simulation will stop when this time is reached. If you assign the value 0 to this

parameter, this stopping criterion will not be taken into account.

• Experiment. Experiment allows us to run a series of simulations by changing the value of a particular

parameter in each simulation. The change of parameters can be linear or logarithmic. The value of the

parameter is changed considering a step size and a minimum and maximum value. At the end of an

experiment, Mercury presents a graph showing the impact of each value change on the selected metric. In

this graph the user can see the average value and confidence intervals for each point.

Figure 65 shows the stationary simulator in action.

The information displayed in this window is self-describing. The stationary simulator has two tabs. The

”Batches and Errors” tab displays the logs of the processed batches and the relative error of the simulation up to

that point (see Figure 66). The ”Transitions Firings” tab shows the number of firings for each fired transition, as

well as the percentage of firings relative to the other fired transitions (see Figure 77).

The simulation finishes when one of the following is reached: maximum relative error, minimum simulation

time when there is no variation in the error, maximum simulation time, or the minimum number of firings for

each transition and the error has also been reached, whichever comes first. At the top of the window there is

46

Figure 65: Stationary Simulator

Figure 66: Batches and Errors

Figure 67: Transitions Firings

a progress bar that shows the progress of the simulation. This simulation progress is subject to adjustments

depending on the simulation, as the previously estimated number of batches to reach the relative error can be

47

re-estimated, changing the overall progress of the simulation. In addition, the user can pause, resume, and stop

the simulation at any time (see Figure 78).

Figure 68: Buttons on the Stationary Simulator

When a simulation is complete, the user can export the result as plain text or as a spreadsheet (MS Excel)

(see Figure 69). Considering the result of a simulation, a variety of statistics are calculated.

Figure 69: Export Buttons

Some statistics generated by the simulator are:

• Sample Size

• Mean

• Midrange

• Minimum

• 1st Quartile

• 2nd Quartile

• 3rd Quartile

• Maximum

• IQR (interquartile range)

• Range

• RMS (root mean square)

• Variance

• Standard Deviation

• Mean Absolute Deviation

• Coeff. Of Variation

• Sum

• Sum of Squares

48

• Skewness

• Kurtosis

• Standard Error

• Relative Error

At the end of the simulation, the result is displayed on the “Result” tab of the main window. Figure 70

shows the example model we used in the simulator. Listing 2 shows an example of the output generated by the

simulator. In this example, only one metric was evaluated.

Figure 70: SPN Model for Stationary Simulation

49

Listing 1: Stationary Simulation Result

STATIONARY SIMULATION RESULT

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Confidence Level %: 95.0

Max. Relat ive Error %: 1.0

Min . Fir ing for each Transition : 0

Max. Simulation Time : 0

Min . Warm−up Period : 50

Warm−up Period : 5135.85

Global Time : 453749665.85

Batch Size : 30

Batches : 10000

Transitions Fir ings : 300001

Fired Transitions : 4

Non−Fired Transitions : 2

Fired Transitions

TE0 = 75001 (0.2500%)

TE1 = 75000 (0.2500%)

TE4 = 75000 (0.2500%)

TI0 = 75000 (0.2500%)

Non−Fired Transitions

TE2

TE3

Descriptive S t a t i s t i c s

−−−

Metric : A , P { (# P0>0)OR(#P2>0)}

Result : 0.9999833664497092

Nines : 4.7790150443977675

Confidence I n t e r v a l : [0.9999833628996808 ,0.9999833699997376]

Standard Error : 1.811053049610908E−9

Error %: 1.0

50

Sample Size , n : 10000

Midrange : 0.9999817534036552

Minimum: 0.9999784761307453

1 s t Quarti le : 0.9999833204467997

2nd Quarti le : 0.9999833471453827

3rd Quarti le : 0.9999833889670042

Maximum: 0.9999850306765653

IQR : 6.852020451031393E−8

Range : 6.5545458199922635E−6

RMS: 0.9999833664497279

Variance , s ^2: 3.2799131485049696E−14

Standard Deviation , s : 1.811053049610908E−7

Mean Absolute Deviation : 6.560655693113038E−8

Coeff . Of Variation : 1.8110831743539695E−7

Sum: 9999.833664497091

Sum Sq : 9999.667331761308

Skewness : −11.6910502101944

Kurtosis : 233.18498785918288

Now we will show you how to perform experiments in the stationary simulator. Figure 71 shows the dialog

box that appears when you confirm the simulation input parameters and enable the “Experiment” option.

Figure 71: Executing an experiment in the Stationary Simulation

In this window, the user must select the parameter to be changed, its minimum and maximum values,

whether the value should be changed linearly or logarithmically, and the step size if the value is changed linearly.

If the change is logarithmic, it is considered as a base-10 logarithmic function. Also, the user must select the

metric to be evaluated. At the end of the simulation, a graph is created that takes into account the value of the

metric for each change in the parameter value. As can be seen in Figure 72, the mean value and its confidence

51

interval are plotted for each point. When you move the mouse pointer over the point representing the mean, the

values of the confidence intervals are displayed as a tooltip. Figure 73 shows the result of a stationary simulation

experiment with a base-10 logarithmic variable.

Figure 72: Output of a Stationary Simulation Experiment for an SPN Model - Variable k Linearly Changed

52

Figure 73: Output of a Stationary Simulation Experiment for an SPN Model - Logarithmic Variable

2.1.2 Transient Simulation

Models with non-exponential transitions can only be evaluated by simulations. Transient simulations can be

used when the user is interested in evaluating metrics at a particular point in time. A transient simulation

consists of a series of replications and each replication consists of a series of runs. Each run runs from time 0

until time t’, specified by the user in the ”time” parameter, is reached. When the current set of runs is finished,

the value of each sampling point of the current replication is calculated. The replication represents the mean

values of the points in its set of runs.

The transient simulator can be accessed from the menu Evaluate -> SPN Evaluation -> Transient Simulation.

Figure 74 shows the input parameters for the transient simulator. Each parameter is described below.

• Resolution Method. Mercury supports two methods of calculating the values of the points in the transient

simulation.

”DES + Linear Regression 1” calculates the value of each point at the end of each run by linear interpolation

between two known points. When the number of runs of a replication has been performed, the values of

each point in the current set of runs are collected and its average value is assigned to the same point in the

current replication.

”DES + Linear Regression 2” calculates the value of each sampling point of the current replication when

the set of runs has been performed. Unlike the first method, this method calculates the value of each point

53

Figure 74: Input Parameters for the Transient Simulator

of the current replication considering its entire set of runs. This method applies linear regression between

several known points. For each sampling point, this method considers two sets of events. The first one

comprises the set of the last events that occurred before the evaluated point. The second set consists of

the first events that occurred at the evaluated point or after it. In each run, the events that occurred before

the evaluated point and the events that occurred at the evaluated point or after are collected. For each

set of points, the mean value of the metric and the mean time of occurrence of the events are calculated.

Then the value of the metric for the current sampling point is estimated.

• Confidence Level. The confidence interval for obtaining the metrics.

• Max. Relative Error %. Defines the maximum relative error in order to stop the simulation.

54

• Time. Sets the evaluation time (t’). Each run starts with time 0 until time t’ is reached. This time can be

divided into different intermediate points and each metric is evaluated for each point. The intermediate

points are defined by the number of sampling points.

• Sampling Points. Specifies the number of sampling points that will be evaluated during the simulation.

The time interval from time 0 to time t’ is divided into intermediate points considering this number of

sampling points. If the user chooses to evaluate only one sampling point, only the value of the metric at

time t’ will be considered.

• Replications. Sets the initial number of replications of the simulation. If the initial number of replications

is reached and the simulation error has not yet been reached, then the simulator estimates a new number

of replications to reach the desired error, taking into account the current state of the simulation. The

simulator re-estimates the number of expected replications to reach the simulation error whenever the

number from the last estimation is reached and the error is not yet reached.

• Runs. Specifies the number of runs for each replication. As we mentioned earlier, each replication consists

of a series of runs. Each run starts at time 0 until time t’ is reached. When the number of runs for the

current replication is reached, the values for time t’ and any intermediate times are calculated and assigned

to the current replication. A new replication is then initiated unless the stop criteria are met.

• Min. firing for each Transition. Sets the minimum number of firings for each transition. This is another

condition to stop the simulation. If you enter a value greater than 0, the simulation will not stop until the

number of firings for each transition is equal to or greater than the defined value and the error criterion

has been reached or the maximum elapsed time has been reached, if defined. If you enter the value “0” for

this input parameter, the simulator will not consider this stopping condition.

• Minimum Simulation Time (sec). This stopping criteria defines the minimum elapsed time of a simulation.

This time corresponds to the physical time and must be specified in seconds. This criterion can help us

run simulations when the model may have rare events. Rare events occur when the difference between

the delays associated with the transitions is huge. Rare events may be the reason why there is no variation

in the simulation error. Therefore, the simulator cannot proceed with the simulation by estimating the

necessary number of replications in order to reach the desired relative error, since the relative error has

not changed since the beginning (it is 0). Entering a minimum time avoids stopping the simulation in

this case. If the minimum time is reached and there has been no change in error, the simulation will stop.

Otherwise, the simulation continues until the error or another stop criterion is reached. If you enter the

value ”0” for this input parameter, the simulator will not consider this stopping condition.

• Maximum Simulation Time (sec). This stopping criteria defines the maximum elapsed time of a simu-

lation. This time corresponds to the physical time and must be specified in seconds. If the stop criteria

(minimum simulation time, maximum relative error, and number of firings for each transition) are not

55

met before this time is reached, the simulation will stop when this time is reached. If you set the value “0”

for this input parameter, the simulator will not consider this stopping criterion.

• Experiment. Experiment allows us to run a series of simulations by changing the value of a particular

parameter in each simulation. The change of parameters can be linear or logarithmic. The value of the

parameter is changed considering a step size and a minimum and maximum value. At the end of an

experiment, Mercury presents a graph showing the impact of each value change on the selected metric. In

this graph, the user can see the average value and confidence intervals for each point.

• Location. Before you start the simulation, you must specify the location where you want to save the

results.

Figure 75 shows the transient simulator in action.

Figure 75: Transient Simulator

The information displayed in this window is self-describing. The transient simulator has two tabs. The

”Replications and Errors” tab displays the logs of replications processed and the relative error up to that point

(see Figure 76). The ”Transitions Firings” tab shows the number of firings for each fired transition, as well as the

percentage of firings relative to other fired transitions (see Figure 77).

The simulation finishes when one of the following is reached: maximum relative error, minimum simulation

time when there is no variation in the error, maximum simulation time, or the minimum number of firings for

each transition and the error has also been reached, whichever comes first. At the top of the window there is

a progress bar that shows the progress of the simulation. This simulation progress is subject to adjustments

56

Figure 76: Replications and Errors

Figure 77: Transitions Firings

depending on the simulation, as the previously estimated number of replications to reach the relative error may

be re-estimated, changing the overall progress of the simulation. In addition, the user can pause, resume, and

stop the simulation at any time (see Figure 78).

Figure 78: Buttons on the Transient Simulator

A large number of statistics is computed by considering the result of a simulation. Some statistics generated

by the simulator are:

• Sample Size

• Mean

• Midrange

• Minimum

57

• 1st Quartile

• 2nd Quartile

• 3rd Quartile

• Maximum

• IQR (interquartile range)

• Range

• RMS (root mean square)

• Variance

• Standard Deviation

• Mean Absolute Deviation

• Coeff. Of Variation

• Sum

• Sum of Squares

• Skewness

• Kurtosis

• Standard Error

• Relative Error

At the end of a simulation, the result is displayed on the “Result” tab of the main window. Listing 2 shows an

example of output generated by the transient simulator. In this example, only one metric was evaluated.

Listing 2: Transient Simulation Result

#############################

TRANSIENT SIMULATION RESULT

#############################

Results have been s u c c e s s f u l l y saved in the following directory :

G: \ Modelos\

−−−−−−−−−−−−−−−−−−−

Input Parameters

−−−−−−−−−−−−−−−−−−−

58

Resolution Method : DES + LINEAR REGRESSION 1

Confidence Level %: 90.0

Max. Relat ive Error %: 10.0

Simulated Time : 100.0

Number of Sampling Points : 5

Number of Replications : 30

Number of Runs : 20

Min . Fir ing for each Transition : 0

Min . Simulation Time(sec) : 0

Max. Simulation Time(sec) : 0

−−−−−−−−−−−−−−−−−−−−

Result

−−−−−−−−−−−−−−−−−−−−

Replications : 100 (the simulation has been finished on

t h i s r e p l i c a t i o n)

Transitions f i r i n g s : 11219

Fired t r a n s i t i o n s : 3

Non− f i r e d t r a n s i t i o n s : 2

−−−−−−−−−−−−−−−−−−−−−−−−−

Transitions Fir ings Log

−−−−−−−−−−−−−−−−−−−−−−−−−

TE0 = 5338 (0.4758%)

TE1 = 2714 (0.2419%)

TE2 = 0 (0.0000%)

TI0 = 3167 (0.2823%)

TI1 = 0 (0.0000%)

−−−−−−−−−−−−−−−−−−−−−−−−

Descriptive S t a t i s t i c s

−−−−−−−−−−−−−−−−−−−−−−−−

Metric : MRT, ((E{#P0 }) + (E{#P3 })) / ((1 / A r r i v a l) * (1 −(P{#P1 = 0 })))

Simulated Time : 100.0

Result : 47.525

59

Nines : NaN

Confidence I n t e r v a l : [45.39652245547025 ,49.65347754452975]

Standard Error : 1.2819133229968283

Error %: 10.0

Sample Size , n : 100

Midrange : 53.75

Minimum: 25.0

1 s t Quarti le : 38.75

2nd Quarti le : 45.0

3rd Quarti le : 56.25

Maximum: 82.5

IQR : 17.5

Range : 57.5

RMS: 49.20683387498123

Variance , s ^2: 164.33017676767705

Standard Deviation , s : 12.819133229968282

Mean Absolute Deviation : 10.179999999999996

Coeff . Of Variation : 0.26973452351327265

Sum: 4752.5

Sum Sq : 242131.25

Skewness : 0.5220765348073639

Kurtosis : −0.0317526461636799

−−−−−−−−−−−−−−−−−−−−−−−−−−

60

2.1.3 MTTA Simulation

Mercury provides a type of evaluation in the transient simulator that evaluates the behavior of absorbing models

and generates a large number of results from them. Figure 79 shows an example of an absorbing model.

Figure 79: Absorbing SPN Model

Mean time to absorption (MTTA) simulation is accessed by following the menu depicted in Figure 80.

Figure 80: Accessing the Transient Simulator

By accessing this menu, a window with two tabs is displayed (see Figure 81). The first tab contains the input

parameters for the default transient simulator (see previous section). The second tab (“MTTA Analysis”) contains

the input parameters for the MTTA simulation, which are described below:

• Confidence Level %. Confidence interval for generating the statistics.

• Number of Samples. Number of samples that the simulator will collect. After the samples are collected,

statistics are generated from them.

• Relative Error %. Maximum relative error to be considered. The MTTA simulation stops only when the

relative error of the simulation is equal to or smaller than the relative error defined by the user.

61

Figure 81: MTTA Analysis Dialog

At the end, a window displays the results of the transient simulation for the absorbing model being evaluated.

The “Summary” tab provides statistics about the simulation. As we can see in Figure 82, a large number of

statistics are calculated. Listing 3 shows the output of an MTTA simulation in detail.

Figure 82: MTTA Result - Summary

62

Listing 3: MTTA Result

MTTA TRANSIENT SIMULATION RESULT

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Sample Size , n : 1000

Mean: 61863.599855982065

Nines : NaN

Confidence I n t e r v a l (95.0%): [61310.605210763424 ,62416.59450120071]

Standard Error : 281.8034826026818

Relat ive Error (%): 3.162277660168379

Midrange : 66370.30885868458

Minimum: 37794.47142699976

1 s t Quarti le : 55520.35342493853

2nd Quarti le : 61357.24789040277

3rd Quarti le : 67805.55171304397

Maximum: 94946.14629036942

IQR : 12285.198288105443

Range : 57151.67486336966

RMS: 62501.51019571655

Variance , s ^2: 7.9413202807E7

Standard Deviation , s : 8911.408575921092

Mean Absolute Deviation : 7127.0523778263905

Coeff . Of Variation : 0.14404930519185394

Sum: 6.1863599855982065E7

Sum Sq : 3.9064387767452607E12

Skewness : 0.20633434070873952

Kurtosis : −0.07520528277738636

The “PDF” tab displays the probability density function of the generated data (see Figure 83). The cumulative

distribution function of this data is displayed on the “CDF” tab (see Figure 84). By placing the cursor on any blue

point of the plotted curve, the tool will display the x-axis and y-axis values as a tooltip (see Figure 85). The user

also has the option to export the result to a MS Excel spreadsheet (an .xls file).

63

Figure 83: MTTA Result - PDF

Figure 84: MTTA Result - CDF

Figure 85: X and Y Axis Values

64

2.2 SPN Analysis

Stationary Analysis and Transient Analysis both compute results by generating the underlying CTMC related

to the state space of the SPN model being evaluated. Stationary analysis computes steady-state probabilities,

useful for evaluating the long-term average behavior of modeled systems. Transient analysis, on the other hand,

computes time-dependent probabilities, useful for evaluating the behavior of modeled systems at a particular

point in time.

As of Mercury version 5.2, the tool provides two methods for storing the CTMC states underlying the SPN

models evaluated during the state space generation process for the application of analytical solutions. The first

method (“memory”) is the traditional method, where the state space of the model is stored only at RAM. In the

second method (“disk”), the CTMC states are stored on disk during state space generation, making it possible

to generate large CTMCs on computers where the amount of RAM is limited. Both methods are available for

stationary and transient analysis.

2.2.1 Stationary Analysis

Figure 86 shows the “Stationary Analysis” window, which has a combo box for selecting one of two solution

methods available: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative - Gauss-Seidel.

When solving a model through GTH, the user can change the maximum error used in the algorithm. The

default value for the maximum error is 0.0000001 (10−7). Clicking the ”Run” button will trigger the solution

algorithm and once it is finished, the results will be displayed in the text area at the bottom of the window (see

Listing 4).

Listing 4: Stationary Analysis for an SPN

Tue Feb 11 07:01:25 BRT 2020

Performing stat ionary analysis . . .

Generating CTMC. . .

CTMC generated . . . (1 s)

Executing GTH numerical method . . .

Done ! (elapsed time : 1s)

S0=0.9903691816162996

S1=0.009630818383700439

When solving the model by Gauss-Seidel, the user can change not only the maximum error but also the

maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm

will not stop until the convergence of the results is reached, taking into account the error entered in the input

dialog (see Figure 87).

65

Figure 86: Stationary Analysis Window

Metrics are updated as soon as the analysis is complete, regardless of the method chosen. Their values are

updated in the drawing area, as shown in Figure 88, where a metric called “Availability” has been defined.

SPN models can also be solved for a range of values of the user-defined parameters. To do this, check the

“Experiment” box in the “Stationary Analysis” window and then click the “Run” button. A new dialog box will

appear where the user can specify the input parameters for the experiment to be run (see Figure 89).

Below, we describe each of them.

• Parameter. Parameter (definition) that will have its value changed.

• Minimum Value. Initial value to be assigned to the selected parameter.

• Maximum Value. Final value to be assigned to the selected parameter.

• Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is

logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

66

Figure 87: Stationary Analysis Window - Gauss-Seidel Method

• Interval (step size). This is the step size for changing the value of the parameter. The parameter starts

with the minimum value and its value is increased considering the step size. At each change, the selected

metric is evaluated. The experiment ends when the maximum value for the parameter is reached.

• Metric. Metric to be evaluated.

At the end of the experiment, the results are displayed and a graph is plotted, as we can see in Fig-

ures 90 and 91.

67

Figure 88: An SPN Model

Figure 89: An SPN Experiment

2.2.2 Transient Analysis

Figure 92 shows the window “Transient Analysis” , which has a combo box for selecting one of the two solution

methods available: Uniformization (also known as Jensen’s method) and Runge-Kutta (4th order).

When solving a model, the user can define:

• Time for which the analysis will be carried out (default: 100).

• Precision of results (default:10−7),

68

Figure 90: Results from an SPN Experiment

By selecting the Uniformization method, note that the time required for obtaining results is proportional to

the time entered by the user for the analysis because Uniformization is an iterative algorithm.

By clicking on button “Run”, the solution algorithm is triggered. As soon as it finishes, results are presented

in the text area at the bottom of the window, also they are written in a plain text file having the filename of the

project appended with the “-TransientAnalysis.txt” suffix.

This window also allows the user to choose between a Point or Curve analysis. Point analysis is the default,

and it shows results only for the specific point in time. Curve analysis writes in a plain text file all measures

values computed in intermediate steps from time equals zero until the specified time.

Mean time to absorption (MTTA) is a metric that can be computed for absorbing SPNs by checking “Mean

Time to Absorption (failure)”. MTTA is presented after the state probabilities in the “Results” text area.

69

Figure 91: Graph from an SPN Experiment

2.3 SPN Structural Analysis

Mercury provides a feature to analyze SPNs without generating the reachability graph, but by considering

the structure of the model. The “Structural Analysis” allows to prove some properties of a SPN model using

invariants and traps techniques. It is accessible from the menu Evaluate -> SPN Evaluation -> Structural

Analysis (see Figure 93).

When the structural analysis is complete, the “Structural Analysis” window is displayed with various tabs,

each containing information about the structural properties of the SPN: Matrix O (output matrix), Matrix I

(input matrix), Matrix C (incidence matrix), Matrix H (inhibitor matrix), Classification, Invariant Analysis,

and Siphons/Traps. In the same window, you can export the result to a plain text file by clicking the “Save to file”

button.

70

Figure 92: Transient Analysis Window

2.4 Token Game

Token Game allows us to simulate the behavior of SPN models. In other words, users can debug the model. In

this way, errors in the construction phase of the model can be easily detected and improvements can be made to

fix them. Figure 95 shows the model we took as an example.

Considering the guard expression defined below, there is a transition called ALL_F that represents the

behavior of a system. In other words, when it fires, the mode of that system changes from operational to faulty.

The guard expression associated with this transition (ALL_F) is represented as follows.

((#Ter mi nati on9_ON = 0)OR(#Ci r cui tBr eaker 8_ON = 0)

OR (((#U PS0_ON = 0)OR(#SDTr ans f or mer 3_ON = 0))

AND ((#U PS7_ON = 0)OR(#SDTr ans f or mer 6_ON = 0))))

Considering our SPN model and using Token Game, users can simulate device failures as well as the corre-

sponding consequences on the availability of a system. To turn Token Game on or off, the user must click on the

“Token Game” button highlighted in Figure 96. Also, we can see in this figure that any component can fail by

71

Figure 93: Structural Analysis Function

Figure 94: Structural Analysis Window

triggering an enabled transition (the ones highlighted in green).

If we assume that the transition “Termination9_F” was fired (see Figure 97), this means that the termination

failed. So we see that only one transition is ready to be triggered (ALL_F), which means that the system has

switched to failure mode as expected.

72

Figure 95: SPN Model

Figure 96: Turning Token Game On

73

Figure 97: Example of a Token Game

74

2.5 Sensitivity Analysis

Mercury allows us to perform a sensitivity analysis for SPNs and calculate partial derivative sensitivity indices for

them. This analysis is accessible from the Evaluate -> SPN Evaluation -> Sensitivity Analysis (min/max values)

menu. Figure 98 shows the “Sensitivity Analysis” window.

Users must choose between two methods of sensitivity analysis: “Design of Experiments” and “Sensitivity

Indices”. The former uses the standard method of analysis of variance to determine the effect of each factor on

the results. The latter uses the technique of percentage difference, thus requires a minimum and a maximum

value for each parameter to calculate the corresponding percentage variation on the selected metric.

Mercury is able to calculate the sensitivity to an SPN measure with respect to any SPN delay parameter.

The results of the sensitivity analysis are presented in three possible output formats: “None”, “JFreeChart”,

and “R”. Users must select one of these outputs, as shown in Figure 99. The default option is “None”, which

outputs the results to the text area at the bottom of the window.

75

Figure 98: Sensitivity Analysis for an SPN Model

Figure 99: Output Options for Sensitivity Analysis

76

3 RBD Modeling and Evaluation

Reliability Block Diagram (RBD) is a success-oriented modeling approach to support dependability assessments.

By evaluating RBDs, users can see how the failure or success of individual components contributes to overall

reliability and availability. When you create a project, the default RBD model contains only one empty block.

When you access the RBD view, you can see that this default model contains a light gray block named b1 (see

Figure 100). This color indicates that the properties of this block have not yet been defined. RBD is evaluated

from left to right.

Figure 100: Default RBD Model

Unlike the other formalisms, the RBD view does not have a toolbar that allows the user to select components

and make changes to the model. All operations to change the model are performed by selecting menu items

with the mouse. For example, the user must right-click on the first block to create another block. As you can

see in Figure 101, there are some options in the popup menu. You make changes to the model by selecting the

appropriate action in the respective menu item. Among the available options you can find the basic operations:

insert, edit and remove blocks.

Figure 101: Popup Menu for RBD Blocks

To insert a block, the “Insert block” menu must be selected. Depending on how the new block is to be

connected to the other blocks, you must select the “Series” or “Parallel” menu. For each of these blocks there are

77

two types of blocks that can be created: “Simple Block” and “k-out-of-n Block” (see Figure 102).

Figure 102: Inserting an RBD Block

When you select the type of block to insert, a window appears where you can specify the properties of the

new block(s). Figure 103 shows the dialog that appears when inserting a simple block, and Figure 104 shows

the dialog that appears when inserting a k-out-of-n block. As you can see, the only difference between the two

dialogs is that two new fields (K and N) are displayed when the “k-out-of-n Block” option is selected. In addition

to the properties of the block, you must also specify how many blocks should be inserted. In this case all new

blocks will have the same properties.

78

Figure 103: Inserting a Simple Block

79

Figure 104: Inserting a K-out-of-N Block

Once a block is created, you can edit its properties by right-clicking on it and selecting the “Properties”

menu. Another option is to double-click on the block. A third option is to double-click on the component view

in the upper left panel under the “RBD Model” icon (see Figure 105). Figure 106 shows the properties of an

already created simple block. The moment a block is inserted, the “Block Name” field is not displayed to the user

because the name for that block is automatically set by Mercury (see Figure 103). Once the block is created, you

can change its name by accessing its properties.

80

Figure 105: Top-Left RBD panel

Figure 106: Properties of Simple Blocks

81

Next, let us get an overview of block properties.

• Number of Blocks. The moment a block is created, the number of blocks to be created is queried. If you

enter a value greater than 1, all blocks will be assigned the same parameter values.

• Block Name. Name for the block. At the time a block is created, Mercury determines its name. Once

created, the name can be changed by the user by accessing the block’s properties.

• Description. A description is additional information about the block or the component/subsystem it

represents. It is intended to improve understanding of the model and has no semantic value in evaluating

the model. It is just plain text attached to the block.

• Parameters Type. Blocks accept three types of parameters: DISTRIBUTION PARAMETERS, AVAILABILITY,

and RELIABILITY. At any given time, only one of them can be selected. The default type is DISTRIBUTION

PARAMETERS. If the parameter type is DISTRIBUTION PARAMETERS, the user can enter the appropriate

values for the failure and repair parameters (see Figures 103, 104, and 106). If the type is AVAILABILITY

or RELIABILITY, the user can enter the appropriate value considering the selected type, as we can see

in Figure 107. In the context of the last figure, the user must enter the availability of the component

represented by the block.

• State. State of the block. Two states are available: DEFAULT or FAILED. The default state is DEFAULT,

which means that the block is working properly.

• Failure Parameters. Mercury supports a large number of probability distributions. Fields appear repre-

senting the parameters of the selected distribution so that the user can enter their values. Each failure

parameter may be assigned a label. Using the "..." button we can select an already declared label.

• Repair Parameters. Fields appear for the parameters of the selected distribution, where the user can enter

the appropriate values. Each repair parameter can be provided with a label. Using the button "..." we can

select an already declared label.

• Price. Cost in terms of the component represented by the block. The cost of blocks is considered by

evaluating the model using the “Component Importance and Total Cost of Acquisition" method. See

Section 3.2.4 for more information on this type of evaluation.

• K and N. Two fields appear when k-out-of-n blocks are edited. A KooN block represents a set of N identical

components in a single block. All components in this set have the same failure and repair parameters. This

type of block allows the user to specify the minimum number of components (K) that must be functioning

in order for failure not to occur. Figure 108 shows how a KooN block is represented. As we can see, the

values of the K and N parameters are shown next to the block name in the diagram.

82

Figure 107: Defining the Availability of a Block

Figure 108: An Exponential KooN block

Figure 109 shows an RBD with two blocks in series and Figure 110 shows an RBD with two blocks in parallel.

The color of the block changes by assigning all required parameters. Evaluations can only be performed if all

required parameters of all blocks are entered.

83

Figure 109: Two Blocks in Series

Figure 110: Two Blocks in Parallel

Mercury has a feature to improve the readability of models. Once the parameters of a block have been

assigned, you can read them on the diagram by moving the mouse pointer over the block. A tooltip will then

appear showing all the properties of that block. As we can see in Figure 111, all properties are displayed in the

tooltip. All types of components of all formalisms supported by Mercury provide this feature.

Figure 111: Tooltip for a Block

Finally, let us look at the types of blocks and how they are represented graphically. Figure 112 shows the

six types of RBD blocks. Figures 112.a and 112.b show blocks that have no parameters associated with them.

Figures 112.c and 112.d show exponential blocks, but in c) the state of the block is defined as “Default”, while

in d) it is defined as “Failed”. Figures 112.e and 112.f show non-exponential blocks, but in e) the state of the

block is defined as “Default”, while in f) it is defined as “Failed”. As we can see, blocks without failure/repair

parameters are represented by a light gray block. Exponential blocks are represented by a dark gray block. Finally,

non-exponential blocks are represented by a blue block.

84

Figure 112: Types of RBD Blocks

3.1 RBD Reduction

To reduce the complexity of RBD models, a feature is available that supports a reduction process aimed at

reducing the number of blocks. This function can be used until the model consists of only one block. However,

the original parameters of the blocks can be lost and only the metrics and properties of the original model are

preserved.

Figure 113 shows a model before applying a reduction step, in which there are four blocks. This feature is

applied by right-clicking on the block and selecting “Apply Reduction” (see Figure 114). Figure 115 shows the

model after the reduction has been applied. It can be seen that the number of blocks has been reduced to three

(b2 and b3 have been reduced to only one block, ssb6).

Figure 113: RBD Before a Reduction Step

85

Figure 114: Applying Reduction to an RBD Model

Figure 115: RBD After a Reduction Step

When one or more blocks to be reduced are connected in series, the original characteristics of the model are

preserved. However, when applying reductions in blocks connected in parallel, if the TIME or RATE parameter

have been edited, it is only possible to retain the characteristics at one point in time. Therefore, when applying a

reduction in a block connected in parallel, new options are displayed, as shown in Figure 116. In this case, the

user must select the metric to be evaluated. When reliability is selected, the time for reliability estimation is

requested, as shown in Figure 117. Figure 118 shows the model after the blocks in parallel have been reduced.

86

Figure 116: RBD Before the Blocks Connected in Parallel are Reduced

Figure 117: Entering the Time for Reliability Computation

Figure 118: RBD After the Blocks Connected in Parallel Has Been Reduced

87

3.2 RBD Evaluation

Mercury offers a large number of evaluations for RBDs:

• Evaluation (SFM and SDP methods);

• Bounds Evaluation;

• Importance Measures;

• Experiment;

• Get Functions;

• Sensitivity Analysis; and

• Sensitivity Analysis (min/max values).

These evaluations are available from the Evaluate -> RBD Evaluation menu, as shown in Figure 119. In the

next subsections, we present each evaluation.

Figure 119: RBD Evaluation Menu

88

3.2.1 Evaluation

Evaluation can be used to perform a large number of dependability analyzes (see Figure 120). It can be accessed

from the Evaluate -> RBD Evaluation -> Evaluation menu.

Figure 120: Evaluation

As you can see, you can evaluate eight metrics: mean time to failure, mean time to repair, steady-state

availability, instantaneous availability, reliability, unreliability, uptime and downtime. Users can select or

deselect all metrics by clicking the toggle checkbox labeled “Select All”. Users can also select the unit of time to

be included in the calculation of uptime and downtime: seconds, minutes, hours, and days. If time-dependent

metrics are selected — reliability, unreliability or instantaneous availability —-, the time parameter is required.

There is also an option to analyze time-dependent metrics by considering multiple points in time. The metric is

calculated for each point.

Mercury provides two methods for computing dependability measures. You can choose between SFM

(structural function method) and SDP (sum of disjoint products), as shown in Figure 121. SFM computes

measures considering the structural function of the model. The Boolean algebra-based SDP method, on the

other hand, computes measures considering minimal cuts and paths.

After selecting the options and entering the evaluation time and number of sampling points, if required,

89

Figure 121: Resolution Methods

the user must click on the “Run” button. Once this is done, a window with the results will appear, as shown in

Figure 122. The results are divided into two groups. These are “Steady-state Results” for steady-state metrics and

“Instantaneous Results” for time-dependent metrics. Listing 5 shows results obtained by evaluating an RBD.

Figure 122: Results from Dependability Evaluations

Listing 5: Dependability Results for an RBD Model

MTTF: 1851.0

MTTR: 0.17170111287746095

A v a i l a b i l i t y : 0.9999072473327167

Number of 9 ’ s : 4.032673592551354

Uptime : 8764.999717484678 hours

Downtime : 0.813052515323 hours

90

* * * * * * * * * * * * Instantaneous Results * * * * * * * * * * * *

Time R e l i a b i l i t y (9 ’ s) U n r e l i a b i l i t y

0.0000 1.0000 i n f i n i t y 0.0000

1000.0000 0.691633321371 0.510932556916 0.308366678629

2000.0000 0.356396882296 0.191381860784 0.643603117704

3000.0000 0.168143701199 0.07995169057 0.831856298801

4000.0000 0.07668184036 0.034648622737 0.92331815964

5000.0000 0.034477454386 0.015237580692 0.965522545614

6000.0000 0.015406534721 0.006743050955 0.984593465279

7000.0000 0.00686593439 0.002992121067 0.99313406561

8000.0000 0.003056148227 0.001329300617 0.996943851773

9000.0000 0.001359622975 0.000590878533 0.998640377025

Figure 123 shows the “Reliability Chart” dialog box, which is displayed by clicking the “Plot Reliability” button.

Figure 124 shows the “Instantaneous Availability Chart” dialog, which is displayed when you click the “Plot

Instantaneous Availability” button. These buttons are only visible if the corresponding dependability metrics are

selected in the input dialog. The number of points on the plotted lines is determined by the number of points

entered by the user.

91

Figure 123: Reliability Chart

92

Figure 124: Instantaneous Availability Chart

RBD models can only be solved by simulation when non-exponential probability distributions are associated

with the model. In this case, Mercury shows the message ”Non-exponential distributions detected” at the

bottom of the “Evaluation” window (see Figure 125). Mercury calculates metrics from non-exponential models

considering confidence intervals. The non-exponential blocks are converted into SPNs and these blocks are

solved through simulations.

93

Figure 125: RBD Analysis by Simulation

When you click the “Run” button, some parameters must be entered to support the simulation. The

parameters required depend on the metrics you choose. If you select only steady-state metrics, Mercury displays

the window shown in Figure 126. On the other hand, if you select only time-dependent metrics, Mercury displays

the window shown in Figure 127. If you select both transient and steady-state metrics, both tabs appear in the

same window, as shown in Figure 128. In this case, when clicking the Run button in the dialog box shown in

Figure 128, Mercury considers the parameters in both tabs. If no changes are made to the parameters, Mercury

considers the default parameter values. The results are displayed once the parameters have been defined

and the simulation is complete. Results are presented with confidence intervals, as shown in Figure 129. It is

important to emphasize that the following metrics cannot be solved by running a simulation: MTTF, MTTR, and

instantaneous availability. For more information about simulations, see Section 2.1.

94

Figure 126: Simulation for Steady-State Metrics

95

Figure 127: Simulation for Time-Dependent Metrics

96

Figure 128: Simulation for Steady-State and Time-Dependent Metrics

97

Figure 129: Result from a Non-Exponential RBD Model Evaluation with Confidence Intervals

98

3.2.2 RBD Experiment

Mercury allows us to evaluate the impact of varying some parameters on the model. Now we will show you

how to use the experiment feature. The first step is to define one or more labels. Labels are variables that store

numerical values and can be associated with the failure/repair parameters of blocks. The value of a label is

changed taking into account a step size and at each change the selected metric is evaluated. A label is inserted by

right-clicking on an RBD block and selecting “Insert label” as shown in Figure 130. Another way is to right-click

on the label area in the left pane and choose “Insert label.”. Once this is done, the “Label Properties” window is

displayed (see Figure 131). There the user can set the properties of the label.

Figure 130: Inserting a Label into the RBD Model

Figure 131: Properties of an RBD label

99

Once a label is inserted, it is available in the left window on the RBD tab. Now it can be linked to one or more

block parameters (see Figure 132).

Figure 132: Left-Side RBD Panel

When you right-click on a label, a popup menu with three menu items appears (see Figure 132). We describe

each of these items below.

• Insert label. Displays the “Label Properties” window where the user can insert a label.

• Remove label. Remove the selected label.

• Properties. Displays the “Label Properties” window where the user can change the properties of the label.

After defining a label, it is necessary to attach this label to the failure/repair parameter of the block under

evaluation. Figure 133 demonstrates how to attach a label to a block parameter. It is also possible to attach a

label to the price parameter of a component in the RBD model, as shown in Figure 134.

100

Figure 133: Attaching a Label to a Block Parameter (Failure Distribution - Mean value)

Figure 134: Attaching a Label to the Price Parameter of a Block

Experiment of RBDs can be accessed from the menu Evaluate -> RBD Evaluation -> Experiment. Figure 135

shows the “Experiment” window. To run experiments, the user must enter values for all required fields.

We describe each of these options below.

• Parameter. The label whose value will be changed at each iteration of the experiment.

101

Figure 135: RBD Experiment

• Metric. The metric to be evaluated.

• Minimum Value. Initial value for the selected label.

• Maximum Value. Final value for the selected label.

• Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is

logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

• Interval. Step size that will be taken into account when changing the value of the label. The label starts

with the minimum value and its value is incremented considering this interval. At each change, the

selected metric is evaluated. The experiment is finished when the maximum value for the label is reached.

• Evaluation Time. Evaluation time considered in the calculation of time-dependent metrics. For time-

dependent metrics — reliability, unreliability, instantaneous availability — it is necessary to enter the time

parameter.

After defining the input parameters, the user must click on the “Run Experiment” button to start the

experiment. If the model to be evaluated contains non-exponential blocks, the user must also enter the

simulation parameters, as shown in Figure 136. Once the experiment is finished, the “Experiment Result” dialog

is displayed (see Figure 137).

102

Figure 136: RBD Experiment - Simulation Parameters

103

Figure 137: Experiment Result Dialog

You can initiate a new experiment by clicking the button labeled “New Experiment”. Assume that variable

“A” is a base-10 logarithmic variable, ranging from 1 to 4, as shown in Figure 138. Then, Mercury calculates the

metric and displays the result on a logarithmic scale, as shown in Figure 139.

Figure 138: RBD Experiment - Logarithmic Variable

104

Figure 139: Experiment Result Dialog - Logarithmic Scale

3.2.3 Bounds for Dependability Analysis

Bounds for Dependability Analysis is used to estimate dependability metrics by calculating reliability, availability,

or downtime. It is necessary to estimate the bounds (upper and lower limits) for the calculation of this analysis,

where users get results quickly. This analysis should be performed when the model is huge. This analysis is

divided into two parts: (i) the calculation of the limits and (ii) the use of the sum of disjoint points to determine

the successive values and the number of iterations required.

Users can access this analysis by going to the Evaluate -> RBD Evaluation -> Bounds Evaluation menu.

Figure 140 shows the “Bounds for Dependability Analysis” window. As shown in Figure 141, four metrics can be

evaluated: Steady-State Availability, Instantaneous Availability, Reliability, and Downtime. The “time” parameter

is required if you select “Instantaneous Availability” metric. Once you have selected a metric and entered the

time, if applicable, you must click the “Get Start Values” button to start the evaluation.

First, the upper and lower values are calculated. The first path and the first cut are used to determine the

upper and lower values of the selected metric. The paths refer to the lower bounds, where a minimal set of

components is chosen to ensure the operational mode of the system. The cuts refer to the upper bounds where

a minimal set of components is chosen to ensure the system in failure mode. After getting the upper and lower

values, you can set the number of steps for the upper and lower values and click the ”Run” button (see Figure 142).

Then you can see the result as shown in Figure 143. The user can plot a chart and export the result to a MS Excel

105

Figure 140: Bounds for Dependability Analysis

Figure 141: Metrics for Bounds Evaluation

file.

Figure 142: Bounds for Steady-State Availability

The method of determining successive values and the number of iterations is defined by the number of

paths and cuts in the model. If you increase the number of iterations, the value found will be closer to the exact

value. Once the calculation of the last path or cut is complete, the exact value of the metric can be found.

106

Figure 143: Bounds for Steady-State Availability - Steps Result

3.2.4 Component Importance and Total Cost of Acquisition

“Component Importance” is a metric that indicates the impact of a particular component on the system. Consid-

ering the importance scores, the most important component (i.e., the component with the highest importance)

should be improved to increase the reliability or availability of the system. This evaluation can be used, for

example, to support maintenance activities.

You can use importance measures to determine the relative importance of each component with respect

to the reliability or availability of the overall system. You can access this evaluation by selecting “Importance

Measures” from the Evaluate -> RBD Evaluation menu. Then you need to select a metric in the “Component

Importance Measures” window and then click the “Evaluate” button (see Figure 144). If the “Cost” parameter

has been set for the blocks, it is also possible to evaluate the relationship between metrics and investment costs.

The parameter “Time” is needed for the evaluation of the reliability metrics.

107

Figure 144: Component Importance Measures

As shown in Figure 145, you can choose between a few types of measures. The types are: “Availability Impor-

tance", “Reliability Importance (Birnbaum)", “Criticality Reliability Importance" and “Criticality Availability

Importance." The “Criticality Importances” measures are obtained by considering the system in failure “(f)” or

in operation.

Figure 145: Metrics for Component Importance Measures

The results of such assessments are shown in Figure 146. The results show the importance score for each

component and a graphical view as a ranked list highlighting the most important components in the analysis.

108

Figure 146: Result from Reliability Importance (Birnbaum) Evaluation

3.2.5 Structural and Logical Functions

Mercury generates structural and logical functions of RBD models. Both functions represent the system and refer

to the states of the individual components. Also, it is possible to evaluate the impact on the system operation

considering the faulty components. The system and its components must be in one of the following states:

working (default) or failed. The state of the system is a binary random variable determined by the states of its

components. If the state of each component is known, then the state of the system is also known. The state can

be toggled by accessing the block’s properties (see Figure 147). If the state of a block is failed, the component is

represented by a fire icon above the block, as mentioned earlier in this manual.

Figure 147: State of a RBD block

Let us now demonstrate how to obtain these functions using Mercury. Figure 148 shows an RBD model with

blocks in series and parallel. As we can see, there is one failed block (block b5) in this model.

109

Figure 148: RBD Model for Structural and Logic Function Computation

Structural and logic functions can be accessed from the Evaluate -> RBD Evaluation -> Get Functions menu.

Figures 149 and 150 show the structural and logic functions, respectively, of the RBD model shown above. In

addition to the expressions, the tool shows the blocks marked as faulty (non-functional) and the current state of

the system. In our example, the faulty block (b5) has no effect on the operating state of the system.

Figure 149: Structural Function

110

Figure 150: Logic Function

3.2.6 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from RBDs through sensitivity analysis. These indices

indicate the impact of each input parameter on the availability of the model. Mercury provides two types of

sensitivity analysis for RBD models. The first type of sensitivity analysis considers the current values of the

model’s parameters and can be accessed from the Evaluate -> RBD Evaluation -> Sensitivity Analysis menu. The

second type of analysis considers min/max values for each parameter and supports the ”Design of Experiments”

(DoE) method in addition to the ”Sensitivity Indices” method. This second type of sensitivity analysis is shown

in Section 2.5 and can be accessed from the menu Evaluate -> RBD Evaluation -> Sensitivity Analysis (min/max

values). Figure 151 shows the ”Sensitivity Analysis” window to perform sensitivity analysis considering the

current parameter values, displaying the partial derivative of the structural equation for each parameter and the

sensitivity indices. It should be noted that both types of sensitivity analysis are only available when all event

nodes of the model are exponential.

111

Figure 151: Sensitivity Analysis from an RBD Model

112

4 FT Modeling and Evaluation

Fault trees (FTs) and RBDs differ in their purpose. FT is a top-down logical diagram that allows you to create a

visual representation of a system that shows the logical relationships between the associated events and causes

that can lead to failure of the assessed system. When you create a project, the default model FT contains only a

top-level event “FAILURE” referred to as “undefined," as shown in Figure 152. This means that no failure event

leads to this top event. So from this point on, the user can define the model using components.

Figure 152: Default Fault Tree Model

With the Mercury tool, we can use two types of nodes: basic events and gates (logic ports). Basic events are

represented as leaf nodes, as shown in Figure 153. On the other hand, each supported gate has its own graphical

representation. As we can see in Figure 154, Mercury supports three types of gates: AND, OR, and K-out-of-N

(KooN).

Figure 153: Basic Event

Figure 154: Gates

The events leading to the top-event FAILURE must be directly linked to a GATE, making it possible to

evaluate the probability of an event happening based on the probability obtained by joining basic events and

child gates.

113

Unlike the other formalisms, the FT view does not provide a toolbar that allows the user to select components

and make changes to the model. All operations to change the model are performed by selecting menu items with

the mouse. For example, the user must right-click on the top event to create gates and event nodes. Changes

to the model are made by selecting the appropriate action on the respective menu item. Among the available

options, the user will find the basic operations: insert, edit (properties) and remove.

To create the first gate or single fault event, the user must right-click on the FAILURE event. In this popup

menu there are only two menu items: “Add Gate” and “Add Single Event”. The “Add Single Event” menu adds

only a single fault event to the fault tree, as shown in Figure 155. Figure 156 shows how to add a gate to the top

event. From there, you can choose between three different types of gates: AND , OR , and KooN.

Figure 155: Fault Tree with a Single Event

Figure 156: Adding the First Gate into the FT Model

Once you have selected the type of gate, the ”Add Gate” dialog box appears (see Figure 157). The fields in this

dialog box are described below.

• ID. ID for the gate to be inserted into the model. The ID is generated by Mercury, so users do not have the

option to change it later. Each node in the FT graph has a ID, which uniquely identifies it.

• Gate Type. Type of the gate to be inserted. You can change the gate type by clicking the dropdown button.

• K Value. When you insert a KooN gate, this field is activated. A KooN gate represents a set of identical

components (N) in a single node. All components in this set have the same failure and repair parameters.

For this type of gate, the user should specify the minimum number of components (K) that must fail for

the group of components to fail. Figure 158 shows how a KooN gate is represented. As we can see, the

values of the parameters K and N are shown next to the gate ID in the diagram. In the current version of

114

Figure 157: Add Gate Dialog

Mercury, it is not possible to add child gates to a KooN gate. The KooN gate can only have one basic child

event representing the set of components. We intend to overcome this limitation as soon as possible.

Figure 158: KooN Gate

• (N)umber of Events. When you add a gate, you must specify the number of basic events to be added

as child nodes in the gate. Each gate must have at least two nodes. Once inserted, a basic event can be

replaced by a gate. Thus, it is possible to define a FT model with a large number of levels and components.

• Event Name. Name of the component/event. It is displayed in the rectangular area above the node. The

name can be changed at any time.

115

• Description. A description is additional information about the node or the component or subsystem it

represents. It is intended to improve understanding of the model and has no semantic value in evaluating

the model. It is simple text attached to the node.

After you enter the required fields and confirm by clicking the OK button, Mercury inserts the nodes and

updates the FT diagram. Figure 159 shows a AND gate with two basic events.

Figure 159: AND Gate with Two Basic Events

Double-clicking on a gate opens the “Gate Properties” dialog (see Figure 160).

Figure 160: Gate Properties Dialog

If you change the name and description, the model will be updated accordingly. Figure 161 shows the

updated model.

116

Figure 161: Description Updated

Figure 162: Gate Menu

Another way to edit the properties of a gate is to right-click on it and select “Properties...” from the menu

that appears. As we can see in Figure 162, there are some options available in this menu.

Below we describe the options available in this popup menu.

• Add events. When you select it, a dialog appears (see Figure 163) where you must enter the number of

events to be inserted into the selected gate. Then you have to set the properties (failure/repair parameters)

for each new basic event.

117

Figure 163: Add Events Dialog

• Add single event. Insert an empty event into the gate. In our example (see Figure 161), after choosing “Add

single event” from the gate popup menu AND, a basic event is inserted into this gate, as highlighted in

Figure 164.

Figure 164: AND Gate with a New Event

• Change to {OR, GATE} gate. Change the type of the selected gate. If a port logic OR is selected, the only

available option is to change it to a AND gate. The opposite is true for a AND gate. For example, if you look

at our model, selecting this option will change the AND gate (see Figure 164) to a OR gate (see Figure 165).

• Copy. Copy the selected gate and all its child components to the clipboard.

• Clear. Empty the model. This option is only available when there is only one failure event in the model or

if the gate selected is the top level gate.

• Properties. By selecting this option, the user can change the properties of the selected gate. Figure 160

shows the “Gate Properties” window for AND and OR gates. For a KooN gate, in addition to “Event Name"

and “Description", you can also change the K and N parameters, as we can see in Figure 166.

118

Figure 165: Changing the Type of the Gate

Figure 166: Properties of a KooN Gate

By right-clicking over a non-top gate, a slightly different popup menu is displayed, as we can see by looking

at Figure 167.

Below we describe the options that we have not yet presented and that are available to non-upper gates.

• Change to a blank event. Replace the gate and all its child nodes with an empty event.

• Cut. Cut the selected gate to clipboard.

• Paste. Replace the selected gate with nodes in the clipboard. This option is enabled only if components

were copied to the clipboard.

119

Figure 167: Popup Menu for Non-Top Level Gates

• Delete. Remove the selected gate and all its child nodes.

When you right-click on a basic event, a popup menu appears, as we can see in Figure 168. Below, we

describe each menu item.

• Change to a blank event. Replace the selected node with an empty basic event.

• Insert label. Insert a label into the model. Labels are variables that store numerical values and can be

associated with the failure/repair parameters of events.

• Add gate. Replace the selected basic event with a gate. After selecting the type of gate to replace the basic

event from the submenu, the “Add Gate” dialog box appears (see Figure 157).

• Copy. Copy the selected event to clipboard.

• Cut. Cut the selected event to clipboard. This is only possible if the parent gate has at least three direct

child nodes. Selecting this option will cause an error if there are only two direct nodes at the gate, as shown

in Figure 169.

120

Figure 168: Popup Menu for Basic Events

• Paste. Replace the selected node with components from the clipboard. This function is enabled only if a

component has been copied to the clipboard.

• Delete. Remove the selected node from the model. It is important to emphasize that each gate requires at

least two direct nodes. Therefore, an error occurs if you try to remove a node when the model has only two

nodes, as we can see in Figure 170.

• Properties. Display the dialog box for changing the properties of basic events (see Figure 171).

• Export to PDF. Export the FT model to a PDF file.

121

Figure 169: An Error Occurred While Trying to Cut a Node to Clipboard

Figure 170: An Error Occurred While Trying to Delete a Basic Event

Let us next give an overview of the properties of basic events.

• Parameters Type. The basic events accept three types of parameters: DISTRIBUTION PARAMETERS,

122

Figure 171: Properties Dialog for Basic Events

UNAVAILABILITY, and UNRELIABILITY. At any given time, only one of them can be selected. The default

type is DISTRIBUTION PARAMETERS. If the parameter type is DISTRIBUTION PARAMETERS, the user

can enter the appropriate values for the failure and repair parameters (see Figure 171). On the other

hand, if the type is UNAVAILABILITY or UNRELIABILITY, the user can enter the corresponding value

considering the selected type, as shown in Figure 172. In the context of the last figure, the user must enter

the unavailability of the component represented by the basic event.

• State. State of the basic event. Two states are available: DEFAULT or FAILED. The default state is DEFAULT,

which means that the component is working properly. On the other hand, if the state is FAILED, it means

that the component has failed.

123

Figure 172: Defining the Unavailability for a Basic Event

• Failure Parameters. Mercury supports a large number of probability distributions. Depending on the

distribution selected, fields appear representing the parameters of the selected distribution so that the

user can enter their values. Each failure parameter can be assigned a label. Using the "..." button we can

select an already declared label.

• Repair Parameters. Fields appear for the parameters of the selected distribution, where the user can enter

the appropriate values. Each repair parameter can be provided with a label. Using the button "..." we can

select an already declared label.

• Price. Cost related to the component represented by the basic event. The cost of the events is considered

in the evaluation of the model by "Component Importance and Total Cost of Acquisition" method. See

124

Section 4.1.4 for more information on this type of evaluation.

Finally, let us look at the types of basic events and how they are represented graphically. Figure 173 shows

the six types of basic events. Figures 173.a and 173.b show events that have no parameters associated with them.

Figures 173.c and 173.d show exponential events, but in c) the state of the event is defined as “Default”, while

in d) it is defined as “Failed”. Figures 173.e and 173.f show non-exponential events, but in e) the state of the

event is defined as “Default”, while in f) it is defined as “Failed”. As we can see, events without failure/repair

parameters are represented by a light gray circle. Exponential events are represented by a dark gray circle. And

non-exponential events are represented by a blue circle.

Figure 173: Types of Basic Events

When the required parameters of all basic events associated with a father gate are entered, the color for that

gate changes to yellow, as shown in Figure 174.

Figure 174: FT Model with All Event Parameter Values Defined

Mercury has a feature to improve the readability of models. Once the parameters of a node have been

assigned, you can read them in the drawing area by positioning the mouse pointer over the node. A tooltip will

then appear showing all the properties of that node. As we can see in Figure 175, all properties are displayed in

the tooltip. All types of components of all formalisms supported by Mercury provide this feature.

125

Figure 175: Tooltip for a FT Node

4.1 FT Evaluation

Mercury offers a large number of evaluations for FTs:

• Exact Evaluation;

• Bounds Evaluation;

• Importance Measures;

• Experiment;

• Get Functions;

• Sensitivity Analysis;

• Sensitivity Analysis (min/max values); and

• Export to RBD model.

These evaluations are available from the Evaluate -> FT Evaluation menu, as shown in Figure 176. We present

these evaluations in the next subsections.

126

Figure 176: FT Evaluation Menu

4.1.1 Evaluation

A large number of dependability analyzes can be performed from the “Evaluation” menu. It can be accessed in

the Evaluate -> FT Evaluation menu. Figure 177 shows the window for performing dependability evaluations. As

we can see, we can evaluate eight metrics: mean time to failure, mean time to repair, steady-state unavailability,

instantaneous unavailability, reliability, unreliability, uptime and downtime. Users can select or deselect all

metrics by clicking the toggle checkbox labeled “Select All”. Users can also select the unit of time to be considered

when calculating uptime and downtime: seconds, minutes, hours, and days. If time-dependent metrics are

selected — reliability, unreliability or instantaneous unavailability —-, the time parameter is required. In

addition, there is an option to analyze time-dependent metrics considering multiple points in time. The time

interval goes from 0 to the evaluation time. The metric is calculated for each point.

Mercury provides two methods for calculating dependability metrics. We can choose between SFM (struc-

tural function method) and SDP (sum of disjoint products), as shown in Figure 178. SFM calculates measures

considering the structural function of the model. The SDP method, on the other hand, which is based on

Boolean algebra, calculates measures considering minimal cuts and minimal paths. After selecting the options

and entering the evaluation time and the number of sampling points, the user must click on the “Run” button.

Let us now demonstrate how you can use the Mercury tool to perform evaluations on FTs. We have considered

a model consisting of four events, each of which contributes to the overall failure of the evaluated system (see

Figure 179). As we can see, the system fails when the events e1 or e6 occur, or both events occur in the AND

gate — e4 and e5. The node e6 represents a k-out-of-n component. For event e6 to occur, at least 3 of the 5

components must fail.

We performed an evaluation by considering 600 hours, ”days” as the time unit, and six sampling points

(see Figure 180). At the end of the evaluation, a window with the results appears, as shown in Figure 181. The

results are divided into two groups. These are ”Steady-state Results” for steady-state metrics and ”Instantaneous

Results” for time-dependent metrics. Listing 6 shows an example of a result obtained by evaluating the FT model

127

Figure 177: Evaluation for FTs

Figure 178: Resolution Methods

presented in Figure 179.

128

Figure 179: FT Model for Dependability Evaluation

Listing 6: Dependability Result

* * * * * * * * * * * * Steady−State Results * * * * * * * * * * * *

MTTF: 1048.7722944655652

MTTR: 40.804042901857514

U n v a i l a b i l i t y : 0.04

Number of 9 ’ s : 0.016576456949086937

Uptime : 351.564076736834 days

Downtime : 13.678122263166 days

* * * * * * * * * * * * Instantaneous Results * * * * * * * * * * * *

Time U n r e l i a b i l i t y (9 ’ s) R e l i a b i l i t y Inst . unavail

0.0000 0.0000 0.0000 1.0000 0.0000

100.0000 0.078290535387 0.035405952916 0.921709464613 0.03314820574

200.0000 0.15143914031 0.071317004166 0.84856085969 0.036955533135

300.0000 0.219869505504 0.107832745644 0.780130494496 0.037392741526

400.0000 0.283901139697 0.145027017468 0.716098860303 0.037442945104

500.0000 0.343782929813 0.182952476492 0.656217070187 0.037448709832

600.0000 0.399717857929 0.221644576376 0.600282142071 0.037449371779

129

Figure 180: FT Analysis

Figure 182 shows the “Unreliability Chart” dialog, which is displayed by clicking the “Plot Unreliability”

button. This button is only visible when reliability is selected in the input dialog. The number of points on the

plotted lines is determined by the number of points entered by the user.

Resolutions of models by simulation are required when non-exponential probability distributions are

associated with an event. Figure 183 shows a model with a non-exponential node (node e1). Non-exponential

nodes are converted to SPNs and the model is solved by simulation. When Mercury detects this situation, it

displays the message ”Non-exponential distributions detected" at the bottom of the Evaluation dialog (see

Figure 184).

130

Figure 181: Dependability Result

When you click the “Run” button, some parameters must be entered to support the simulation. The

parameters required depend on the metrics you choose. If you select only steady-state metrics, Mercury displays

the window shown in Figure 185. On the other hand, if you select one or more time-dependent metrics, Mercury

displays the window shown in Figure 186. If you select both transient and steady-state metrics, both tabs appear

in the same window, as shown in Figure 187. In this case, when clicking the Run button in the dialog box shown

in Figure 187, Mercury considers the parameters in both tabs. If no changes are made to the parameters, Mercury

considers the default parameter values. The results are displayed once the parameters have been defined and

the simulation is complete. Results are presented with confidence intervals, as shown in Figure 188. For more

information about simulations, see Section 2.1.

131

Figure 182: Unreliability Chart

4.1.2 FT Experiment

Mercury allows us to evaluate the impact of varying some parameters on the model. Now we will show you

how to use the experiment feature. The first step is to define one or more labels. Labels are variables that store

numerical values and can be associated with the failure/repair parameters of nodes. The value of a label is

changed taking into account a step size and at each change the selected metric is evaluated. A label is inserted

by right-clicking on an event and selecting “Insert label” as shown in Figure 189. Another way is to right-click on

the label area in the left pane and choose “Insert label”, as depicted in Figure 190. Once this is done, the “Label

Properties” window is displayed (see Figure 191). There the user can set the properties of the label.

132

Figure 183: FT with a Non-Exponential Node

Once a label is inserted, it is available in the left window on the FT tab. Now it can be associated with one or

more event parameters. When you right-click on a label, a popup menu appears with three menu items (see

Figure 190). We describe each of these items below.

• Insert label. Displays the “Label Properties” window where the user can insert a label.

• Remove label. Remove the selected label.

• Properties. Displays the “Label Properties” window where the user can change the properties of the label.

After defining a label, it is necessary to attach this label to the failure/repair parameter of the component

under evaluation. Figure 192 demonstrates how to attach a label to an event parameter. It is also possible to

attach a label to the price parameter of a component in the FT model, as shown in Figure 193.

133

Figure 184: FT Evaluation by Simulation

“Experiment” can be accessed from the menu Evaluate -> FT Evaluation -> Experiment. Figure 194 shows

the “Experiment” window. To run experiments, the user must enter values for all required fields. We describe

each of these options below.

• Parameter. The label whose value will be changed at each iteration of the experiment.

• Metric. The metric to be evaluated.

• Minimum Value. Initial value for the selected label.

• Maximum Value. Final value for the selected label.

• Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is

logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

• Interval. Step size that will be taken into account when changing the value of the label. The label starts

with the minimum value and its value is incremented considering this interval. At each change, the

selected metric is evaluated. The experiment is finished when the maximum value for the label is reached.

134

Figure 185: Simulation for Steady-State Metrics

• Evaluation Time. Evaluation time considered in the calculation of time-dependent metrics. For time-

dependent metrics — reliability, unreliability, instantaneous unavailability — it is necessary to enter the

time parameter.

After defining the input parameters, the user must click on the “Run Experiment” button to start the

experiment. If the model to be evaluated contains non-exponential events, the user must also enter the

simulation parameters, as shown in Figure 195. Once the experiment is finished, the “Experiment Result” dialog

is displayed (see Figure 196).

135

Figure 186: Simulation for Time-Dependent Metrics

4.1.3 Bounds for Dependability Analisys

“Bounds for Dependability Analysis” is used to estimate dependability metrics by calculating unreliability,

unavailability, or downtime. It is necessary to estimate the bounds (upper and lower limits) for the calculation of

this analysis, where users get results quickly. This analysis should be performed when the model is huge. This

analysis is divided into two parts: (i) the calculation of the limits and (ii) the use of the sum of disjoint points to

determine the successive values and the number of iterations required.

Users can access this analysis by going to the Evaluate -> FT Evaluation -> Bounds Evaluation menu.

Figure 197 shows the “Bounds for Dependability Analysis” window. As shown in Figure 198, four metrics can be

evaluated: Steady-State Unavailability, Instantaneous Unavailability, Unreliability, and Downtime. The “time”

parameter is required if you select “Instantaneous Unavailability” metric. Once you have selected a metric and

entered the time, if applicable, you must click the “Get Start Values” button to start the evaluation.

136

Figure 187: Simulation for Steady-State and Time-Dependent Metrics

Let us now demonstrate how to perform bounds evaluation using Mercury. We have considered a model

consisting of five events, each of which contributes to the overall system failure (see Figure 199). As we can see,

the system fails when the events e1, e3, and at least one of the following events occur: e4, e5, or e6. We evaluated

the bounds for this model by considering the time parameter equal to 8760h (see Figure 200).

First, the upper and lower values are calculated. The first path and the first cut are used to determine the

upper and lower values of the selected metric. The paths refer to the lower bounds, where a minimal set of

components is chosen to ensure the operational mode of the system. The cuts refer to the upper bounds where

a minimal set of components is chosen to ensure the system in failure mode. After determining the upper and

lower values, we set the number of steps for the upper and lower values to three. Thus, we obtained the result

shown in Figure 201. We have highlighted the values for the upper and lower bounds for the last step — step 3.

As we can see, they are the same. If you click on the “Plot Chart” button, you can see how the lower and upper

bounds for three steps converge to the exact value (see Figure 202).

137

Figure 188: Result from a Non-Exponential FT Model Evaluation with Confidence Intervals

Figure 189: Inserting a Label into the FT Model

The method of determining successive values and the number of iterations is defined by the number of paths

and cuts in the model. If you increase the number of iterations, the value found will be closer to the exact value.

Once the calculation of the last path or cut is complete, the exact value of the metric can be found. The exact

138

Figure 190: Left-Side FT Pane

Figure 191: Inserting a Label in the FT Model

value will be the value found in the last step. We have performed the exact evaluation to obtain the reliability at

8760h. Figure 203 shows that reliability at 8760h is equal to the values obtained in the bounds evaluation for the

maximum number of steps (see Figure 201).

139

Figure 192: Attaching a Label to an Event Parameter

Figure 193: Attaching a Label to the Price Parameter of an Event

4.1.4 Component Importance and Total Cost of Acquisition

“Component Importance” is a metric that indicates the impact of a particular component on the system. Consid-

ering the importance scores, the most important component (i.e., the component with the highest importance)

should be improved to increase the reliability or availability of the system. This evaluation can be used, for

140

Figure 194: FT Experiment

Figure 195: FT Experiment - Simulation Parameters

example, to support maintenance activities.

You can use importance measures to determine the relative importance of each component with respect

to the reliability or availability of the overall system. You can access this evaluation by selecting “Importance

Measures” from the Evaluate -> FT Evaluation menu. Then you need to select a metric in the “Component

Importance Measures” window and then click the “Evaluate” button (see Figure 204). If the “Cost” parameter

has been set for the nodes, it is also possible to evaluate the relationship between metrics and investment costs.

The parameter “Time” is needed for the evaluation of the reliability metrics.

As shown in Figure 205, you can choose between a few types of measures. The types are: “Availability Impor-

tance", “Reliability Importance (Birnbaum)", “Criticality Reliability Importance" and “Criticality Availability

Importance." The “Criticality Importances” measures are obtained by considering the system in failure “(f)” or

in operation.

Below we show you how to perform “Component Importance” evaluations. We performed this evaluation

141

Figure 196: Experiment Result Dialog

Figure 197: Bounds for Dependability Analysis

Figure 198: Metrics for Bounds Evaluation

142

Figure 199: FT Model for Bounds Evaluation

Figure 200: Bounds for Reliability

considering the ”Reliability Importance (Birnbaum)” metric for the model shown in Figure 206.

As we can see in Figure 206, the evaluated system has two sensors and each is connected to the single gate of

the model. For the system to fail, at least one sensor must fail. “Sensor A” has an MTTF of 17520h and an MTTR

of 72h. “Sensor B” has an MTTF of 6000h and an MTTR of 24h. All times are exponentially distributed. When

we perform the “Component Importance” evaluation considering the time parameter of 8760h, we obtain the

results shown in Figure 207.

143

Figure 201: Bounds for Unreliability - Result

The results show the importance value for each component and a graphical representation in the form of a

ranking that highlights the most important components. As we can see, the component “Sensor A” (e1) is the

most important for the system reliability. If you replace “Sensor B” (e2) with another one with the same MTTR

but an MTTF of 12000h, the result changes as shown in Figure 208.

We can see that the importance of “Sensor A” (e1) has decreased. However, considering a time interval of

8760h, “Sensor A” is still more important for overall reliability when compared to “Sensor B”.

144

Figure 202: Plotting Bounds Result

Figure 203: Unreliability at 8760h

4.1.5 Structural and Logical Functions

Mercury generates structural and logical functions of FT models. Both functions represent the system and refer

to the states of the individual components. Also, it is possible to evaluate the impact on the system operation

considering the faulty components. The system and its components must be in one of the following states:

working (default) or failed. The state of the system is a binary random variable determined by the states of its

components. If the state of each component is known, then the state of the system is also known. The state can

be toggled by accessing the event’s properties (see Figure 209). If the state of an event is failed, the component is

145

Figure 204: Component Importance Measures

Figure 205: Metrics for Component Importance Measures

Figure 206: FT Model for Component Importance Evaluation

represented by a fire icon above the node, as mentioned earlier in this manual.

146

Figure 207: Reliability Importance Results

Figure 208: Reliability Importance when Replacing a Component

Let us now demonstrate how to obtain these functions using Mercury. Figure 210 shows a model with a AND

gate and a OR gate. As we can see, there is a failed node in this model (event e3), and this node is a child of the

OR gate.

147

Figure 209: State of an Event

Figure 210: FT Model

Structural and logical functions can be accessed through the Evaluate -> FT Evaluation -> Get Functions

menu. Figures 211 and 212 show the structural and logical functions, respectively, of the FT model shown above.

In addition to the expressions, the tool displays the event nodes marked as faulty (non-functional) and the

current state of the system. In our example, the faulty node (e3) has no effect on the state of the system.

On the other hand, we can see that changing the state of event node e1 to failed (see Figure 213) also changes

the state of the system to failed (see Figure 214).

148

Figure 211: Structural Function

Figure 212: Logic Function

4.1.6 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from FTs through sensitivity analysis. These indices

indicate the impact of each input parameter on the availability of the model. Mercury provides two types of

sensitivity analysis for FT models. The first type of sensitivity analysis considers the current values of the model’s

parameters and can be accessed from the Evaluate -> FT Evaluation -> Sensitivity Analysis menu. The second

type of analysis considers min/max values for each parameter and supports the “Design of Experiments” (DoE)

149

Figure 213: FT Model

Figure 214: Logic Function and System State as Failed

method in addition to the “Sensitivity Indices” method. This second type of sensitivity analysis is shown in

Section 2.5 and can be accessed from the menu Evaluate -> FT Evaluation -> Sensitivity Analysis (min/max

values). Figure 215 shows the “Sensitivity Analysis” window to perform sensitivity analysis considering the

150

current parameter values, displaying the partial derivative of the structural equation for each parameter and the

sensitivity indices. It should be noted that both types of sensitivity analysis are only available when all event

nodes of the model are exponential.

Figure 215: Sensitivity Analysis of Fault Tree

151

4.1.7 Export to RBD model

Users can convert FTs to RBDs. This is done via the menu Evaluate -> FT Evaluation -> Export to RBD model.

The conversion process must be confirmed as shown in Figure 216. After that, the user must select the directory

and enter the name of the file to be created.

Figure 216: Converting FT to RBD

Figure 218 shows an RBD converted from the FT shown in Figure 217.

Figure 217: FT Model

152

Figure 218: RBD Generated from a FT Model

153

5 CTMC Modeling and Evaluation

The first step to start modeling CTMC models on Mercury is to insert states into the graph. In the CTMC view,

the user must click on the “State” button available in the toolbar (see Figure 219), and then click on the desired

location in the drawing area to create a state there.

Figure 219: Adding a CTMC State

After adding states, the transitions between them are drawn by clicking on the center of the source state,

only after the cursor turns into a hand symbol, and then drawing the line up to the target state, as shown in

Figure 220. After that, a directed arc is created between the two states, as shown in Figure 221.

Figure 220: Adding a Transition Between States

Figure 221: A Transition Between States

154

You can set the rate of each transition by double-clicking or right-clicking on the respective arc and selecting

“Properties”. Figure 222 shows the window where the transition rate can be defined.

Figure 222: Defining a Rate for a State Transition

Mercury also allows us to assign reward rates to states. To do this, double-click or right-click on the selected

state and select “Properties”. Figure 223 shows the “State” window where a reward rate can be assigned to a state.

The default reward rate for each state is zero. You can enter any real value or an expression with user-defined

parameters in this window. Also the name of the state can be changed.

Figure 223: Properties of a State

After all states and transitions have been properly defined (see Figure 224), stationary and transient analyzes

can be performed.

155

Figure 224: A CTMC Model

Users can export the infinitesimal generator matrix (transition rate matrix) of the model to a text file by

clicking on the matrix icon in the toolbar, as shown in Figure 225.

Figure 225: Exporting the Transition Rate Matrix

Mercury has a feature to improve the usability of the tool. Once a CTMC component is inserted, you can

read its properties on the drawing area by positioning the mouse pointer over it. A tooltip will then appear

showing all the properties of the component. As you can see in Figure 226, a tooltip with the properties of a state

is displayed.

Figure 226: Tooltip for a CTMC State

156

5.1 Input Parameters/Definitions

Transition rates can be defined using expressions containing both numbers and user-defined parameters. The

“Definition” button on the toolbar is represented by a λ symbol and creates a symbolic parameter (see Figure227).

Figure 227: Adding a CTMC Definition

After clicking on this button, the user must click on any point in the drawing area to place the definition

there. This way a new parameter named Param0 will be created (or Param1, and so on, if other parameters have

already been created). By double-clicking the parameter or selecting “Properties” from the definition’s popup

menu, you can access its properties.

The name of the parameter can be defined by a combination of alphanumeric characters. Identifiers on

Mercury must start with at least one alpha character. Special characters (e.g., a hyphen or an ampersand) are

not allowed, except for underscores. If names with Greek letters are used, Mercury will convert them to the

corresponding symbol of the lowercase Greek alphabet (see Figures 228 and 229). The value assigned to the

parameter can be a numeric expression. Symbols or parameter names are not allowed in the value field.

Figure 228: Modifying a CTMC Parameter

157

Figure 229: Parameters Named by Using Greek Letters

5.2 Metrics

Using the “Metric” button, we can define metrics to extract some characteristic of the model (see Figure 230).

Figure 230: Adding a CTMC Metric

Once a metric is inserted, users can change its name and description and define the expression used to

calculate its value. The syntax for metric expressions is based on state probabilities (P{state name}), rewards

(R{state name}), and base-10 logarithmic function (LOG{expression}). Expressions for probabilities, rewards,

and logarithmic values for any states can be combined (i.e., added, subtracted, etc.). Using the example shown

in Figure 231, the metric AvB3 indicates the availability of the system (state “Up”) represented by the two-state

model. In this case, availability is calculated using the expression P{Up} — that is the probability of remaining

in the state Up. Once the model has been evaluated using stationary or transient analysis, the metrics in the

drawing area are updated accordingly (see Figure 232). Figure 233 shows an example of calculating the base-10

logarithm of the stationary probability of a given state. As we can see, by the expression LOG{1−P {Down}}

we obtain the base 10 logarithm of the probability that the system is in the “Up” (operating) state, which gives

−7.232216190958877×10−4.

158

Figure 231: Defining Name and Expression for a Metric

Figure 232: A CTMC Metric Solved

The reward rate can be determined using the metric expression R{}, and the mean time to absorption — if

there is at least one absorbing state — can be calculated by defining a metric using the expression MTTA.

Metric expressions are still visible in the “Metrics” group on the left side of the CTMC tab (see Figure 234).

This panel shows all the components that make up the CTMC model: states, parameters, metrics, and transitions.

State transitions are represented in this panel by the source and target states, followed by the expression or value

associated with that transition.

159

Figure 233: Using the LOG Function Expression

Figure 234: CTMC Panel on the Left Side of the Main Window

160

5.3 CTMC Evaluation

Mercury makes it possible to perform a large number of evaluations on CTMCs. The tool provides four function-

alities for CTMC evaluations: “Stationary Analysis”, “Transient Analysis”, “Sensitivity Analysis”, and “Sensitivity

Analysis (min/max values).” These evaluations are available from the Evaluate -> CTMC Evaluation menu (see

Figure 235). In the next subsections, we will introduce each of them.

Figure 235: CTMC Evaluation Menu

5.3.1 CTMC Stationary Analysis

Stationary analysis calculates steady-state probabilities useful for evaluating the long-term average behavior

of modeled systems. Figure 236 shows the “Stationary Analysis” window, which contains a combo box for

selecting one of two supported solution methods: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative -

Gauss-Seidel.

When solving CTMCs through GTH, it is possible to change the maximum error used in the algorithm. The

default value for the maximum error is 0.0000001 (10−7). When you click the “Run” button, the solution algorithm

is triggered. Once it is finished, the results are displayed in the text area at the bottom of the window (see Listing 7)

and written to a plain text file, with the project file name appended with the suffix “-StationaryAnalysis.txt”.

161

Figure 236: Stationary Analysis Window

Listing 7: Stationary Analysis for a CTMC

Mon Aug 14 13:09:56 BRT 2020

Performing stat ionary analysis . . .

Done ! (elapsed time : 1s)

Matrix Q has been written into the f i l e :

C: \ Users\Thiago\Chapter_CTMC_Model1−MatrixQ . t x t

##############################

DUU=9.149470622218616E−5

UUU=0.9988171936427845

UUD=9.998170168890783E−4

UDU=9.149463410419709E−5

−−−−−−− Metrics −−−−−−−

A v a i l a b i l i t y =0.9988171936427845

162

−−−−−−−−−−−−−−−−−−

Results have been written into the f i l e :

C: \ Users\Thiago\Chapter_CTMC_Model1−StationaryAnalysis . t x t

When solving CTMCs through Gauss-Seidel, it is possible to change not only the maximum error but also the

maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm

will not stop until the convergence of the results is reached taking into account the entered error (see Figure 237).

163

Figure 237: Stationary Analysis Window - Gauss-Seidel Method

Metrics are updated in the drawing area once the analysis is complete (see Figure 238, where the metric is

located on the left side of the model: “Availability”).

164

Figure 238: CTMC Metrics Updated

CTMC models can also be solved for a range of values of a user-defined parameter. To do this, check the

“Experiment” option and click the “Run” button in the “Stationary Analysis” window. A new window will appear

where the user can specify the input parameters for the experiment (see Figure 239).

Figure 239: CTMC Experiment

Below, we describe each field on this window.

• Parameter. Parameter to have its value changed.

• Minimum Value. Initial value to be assigned to the selected parameter.

• Maximum Value. Final value to be assigned to the selected parameter.

165

• Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is

logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

• Interval. This is the step size for changing the value of the parameter. The parameter starts with the

minimum value and its value is increased considering the entered interval. At each change, the selected

metric is evaluated. The experiment is finished when the maximum value for the parameter is reached.

• Metric. Metric to be evaluated.

At the end of the experiment, the results are displayed and a graph is plotted, as we can see in the Fig-

ures 240 and 241. If you want to run another experiment in the same model, using the button “New Experiment"

in 241 is an easier way to do this. You will return to the window "Options for Experiment" (Figure 239).

Figure 240: Results from a CTMC Experiment

Another option in the ”Stationary Analysis” window allows us to save the CTMC matrix to a file. It will be

written to a plain text file, appending the name of the project file with the suffix ”-MatrixQ.txt”.

166

Figure 241: Graph from a CTMC Experiment

167

5.3.2 CTMC Transient Analysis

Transient analysis computes time-dependent probabilities useful for evaluating the behavior of modeled systems

at a given time. Figure 242 shows the “Transient Analysis” window, which contains an input field for selecting

one of the two available solution methods: Uniformization (also known as Jensen method) and Runge-Kutta

(4th order).

When solving transient metrics of CTMCs, the user can define:

• Time for which the analysis will be carried out (default: 100).

• Precision of results (default:10−7).

• Initial state probabilities (default: 1 for the initial state, 0 for the other states). These probabilities are

defined by clicking the “Set Initial State Probability” button (see Figure 243).

Figure 242: Transient Analysis Window

168

Figure 243: Initial State Probability Window

When selecting the Uniformization method, keep in mind that the time needed to obtain results is propor-

tional to the time entered for the analysis, since Uniformization is an iterative algorithm.

When you click the “Run” button, the solution algorithm is started. Once it is completed, the results will be

displayed in the text area at the bottom of the “Transient Analysis” window. Also, they will be written to a simple

text file appending the project filename with the suffix “-TransientAnalysis.txt”.

In this window we can also choose between Point or Curve analysis. The Point analysis is the default and

shows the state probabilities only for the given time. The Curve analysis writes all state probabilities calculated

from time equal to zero to the specified time into a text file.

Mean time to absorption (MTTA) is a metric that can be calculated by checking “Mean Time to Absorption (

failure)”. MTTA is displayed after the state probabilities in the “Results” text area. For MTTA calculation, the user

can also define a metric with the expression MTTA. “Absorption Probability” for each state is another metric

available in the transient analysis.

169

5.3.3 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from CTMCs through sensitivity analysis. These indices

indicate what effect each input parameter has on a metric. Mercury provides two types of sensitivity analysis

for CTMC models. The first type of sensitivity analysis considers the current values of the model’s parameters

and can be accessed from the Evaluate -> CTMC Evaluation -> Sensitivity Analysis menu. The second type of

analysis considers min/max values for each parameter and supports the ”Design of Experiments” (DoE) method

in addition to the ”Sensitivity Indices” method. This second type of sensitivity analysis is shown in Section 2.5

and can be accessed from the menu Evaluate -> CTMC Evaluation -> Sensitivity Analysis (min/max values).

Next we demonstrate a sensitivity analysis considering the current parameter values. Figure 244 shows a CTMC

representing the availability of a network with two routers and one link.

Figure 244: CTMC Model Representing a Computer Network

This model was proposed in [4] and has six parameters that affect system availability. These parameters are

the mean time to failure (MTTF) and mean time to repair (MTTR) of each component: router 1 (R1), router 2

(R2), and link (L1). Their sensitivity ranking was calculated using Mercury, as shown in Figure 245.

The “Sensitivity Analysis” window for the current parameter values has four options:

• Type of sensitivity index can be scaled or unscaled. If the user chooses scaled indices, each partial

derivative is multiplied by the ratio between the respective parameter value and the metric value. This

removes the influence of the parameter units and provides the sensitivity in a non-dimensional view.

Unscaled indices are the raw results of the partial derivatives. For more details on scaled and unscaled

indices, see [4] and [5].

• Type of ranking might be ordered or unordered. Typically, ordered rankings are preferred to quickly

identify the most important parameters as well as those that have little impact on the chosen metric.

170

• Measure of interest can be any user-defined CTMC measure, for which the user is interested in assessing

sensitivity to input parameters. Please note that no sensitivity analysis can be performed if no measure

has been defined. All measures can be evaluated at once.

• Parameter of interest can be any parameter in the model. The user can choose to see the sensitivity of the

selected measure with respect to only one parameter or to all parameters.

Figure 245: Results of Sensitivity Analysis for a CTMC

171

6 DTMC Modeling and Evaluation

The first step to start modeling DTMC models on Mercury is to insert states into the graph. In the DTMC view,

the user must click on the “State” button available in the toolbar (see Figure 246), and then click on the desired

location in the drawing area to create states there.

Figure 246: Adding a DTMC State

Transitions between them are drawn by clicking on the center of the source state after the cursor turns into a

hand symbol, and then dragging the line to the target state, as shown in Figure 247. After that, a directed arc is

created between the two states, as shown in Figure 248.

Figure 247: Adding a Transition Between States

Figure 248: A Transition Between States

172

It is possible to define the probability of remaining in the current state once it has been reached by using

self-loops. A self-loop for a state is defined by right-clicking on the state and selecting “Self-Loop”, as shown in

Figure 249.

Figure 249: Defining a Self-Loop to a State

Then a self-loop arc is drawn for the state, as we can see in Figure 250. The left pane on the DTMC tab is

updated accordingly.

Figure 250: State with a Self-Loop Transition

The user can define the probability for each transition by double-clicking or right-clicking on the corre-

sponding arc and selecting “Properties”. Figure 251 shows the window where a transition probability can be

defined.

Figure 251: State Transition Probability

Figure 252 shows a DTMC model for which some parameters and a metric are defined. If you define all the

states and transitions correctly, you can perform stationary and transient analyzes.

Users can export the probability matrix of a model to a text file by clicking the button represented by a matrix

icon in the toolbar, as shown in Figure 253.

173

Figure 252: Example of DTMC Model

Figure 253: Exporting the DTMC Probability Matrix

It is worth noting that when modeling DTMCs, the sum of probabilities for all output arcs must equal one for

each state. Otherwise, it is not possible to perform evaluations on the model. Figure 254 shows an error that

occurs when this condition is not met.

Figure 254: Transition Probabilities Error

Mercury has a feature to improve the usability of the tool itself. Once a DTMC component is inserted, you

can read its properties on the drawing area by placing the mouse pointer over it. A tooltip will then appear

showing all the properties of the component. As you can see in Figure 255, all properties of a state are displayed

in the tooltip.

174

Figure 255: Tooltip for a DTMC State

6.1 Input Parameters

Transition probabilities can be defined using expressions containing both numbers and user-defined parameters.

The “Definition” button on the toolbar is represented by a λ symbol and creates a symbolic parameter (see

Figure256).

Figure 256: Adding a DTMC Definition

When we click this button, we must click on any point in the drawing area to put the definition there. This

way a new parameter named Param0 will be created (or Param1, and so on, if other parameters have already

been created). By double-clicking the parameter or selecting “Properties” from the definition’s popup menu, we

can access its properties.

The name of the parameter can be defined by a combination of alphanumeric characters. Identifiers on

Mercury must begin with at least one alpha character. Special characters (e.g. a hyphen or an ampersand)

are not allowed, except underscores. If names with Greek letters are used, Mercury will convert them to the

corresponding symbol of the lowercase Greek alphabet (see Figures 257 and 258). The value assigned to the

parameter can be a numerical expression. Symbols or parameter names are not allowed in the value field.

175

Figure 257: Modifying a DTMC Parameter

Figure 258: Parameters Named Using Greek Letters

6.2 Metrics

Using the “Metrics” button, we can define metrics to evaluate some characteristics of the model (see Figure 259).

Figure 259: Adding a DTMC Metric

Once you have inserted a metric, you can change its name and description and define the expression used to

calculate its value. The syntax for metric expressions is based on state probabilities (P{state name}), rewards

(R{state name}), and base-10 logarithmic function (LOG{expression,10}). Expressions for probabilities, rewards,

and logarithmic values for any states can be combined (i.e., added, subtracted, etc.). Using the example shown

in Figure 260, the metric Prob indicates the probability that the system remains in the states “S0”, “S1”, and “S2”,

which is “1”.

176

Figure 260: Defining Name and Expression for a Metric

Prob is calculated by the expression ”P{ SO }+P{S1}+P{S2}” — it represents the probability of remaining in

the states “SO”, “S1” and “S2”. Once the model has been evaluated using stationary or transient analysis, the

metrics in the drawing area are updated accordingly (see Figure 261).

Metric expressions are still visible in the “Metrics” group in the left panel on the DTMC tab (see Figure 262).

This panel shows all the components that make up the DTMC model: states, parameters, metrics, and transitions.

State transitions are represented by the source and target states, followed by the expression or value associated

with that transition.

177

Figure 261: A Metric Solved

6.3 DTMC Evaluation

Mercury makes it possible to perform a large number of evaluations on DTMCs. The tool provides two types of

evaluations for DTMCs: “Stationary Analysis” and “Transient Analysis”. These evaluations are available from the

Evaluate -> DTMC Evaluation menu (see Figure 263). In the next subsections we will introduce each evaluation.

6.3.1 DTMC Stationary Analysis

Stationary Analysis computes steady-state probabilities useful for evaluating the long-term average behavior

of modeled systems. Figure 264 shows the “Stationary Analysis” window, which contains a combo box for

selecting one of two supported solution methods: Direct - GTH (Grassmann-Taksar-Heyman) and Iterative -

Gauss-Seidel.

When solving DTMCs through GTH, it is possible to change the maximum error used in the algorithm. The

default value for the maximum error is 0.0000001 (10−7). When you click the “Run” button, the solution algorithm

is triggered. Once it is finished, the results are displayed in the text area at the bottom of the window (see Listing 8)

and written to a plain text file, appending the project file name with the suffix “-StationaryAnalysis.txt”.

178

Figure 262: DTMC Panel on the Left Side of the Main Window

Figure 263: DTMC Evaluation Menu

Listing 8: Stationary Analysis of a DTMC

Tue Feb 05 07:01:25 BRT 2020

Performing stat ionary analysis . . .

Done ! (elapsed time : 0)

179

Figure 264: Stationary Analysis Window

##############################

S0=0.625

S1=0.3125

S2=0.0625

−−−−−−− Metrics −−−−−−−

Metric0 =1.0

−−−−−−−−−−−−−−−−−−

Results have been written into the f i l e :

C: \ Users\Thiago\Chapter_DTMC_Modelos−StationaryAnalysis . t x t

When solving DTMCs by Gauss-Seidel, it is possible to change not only the maximum error but also the

maximum number of iterations. The default value for such a parameter is “-1”, which means that the algorithm

will not stop until the convergence of the results is reached taking into account the entered error (see Figure 265).

Metrics are updated in the drawing area once the analysis is complete.

DTMC models can also be solved for a range of values of a user-defined parameter. To do this, check the

180

Figure 265: Stationary Analysis Window - Gauss-Seidel Method

“Experiment” option and click the “Run” button. A new window will appear where the user can specify the input

parameters for the experiment (see Figure 266).

Figure 266: DTMC Experiment

181

Below, we describe each field on this window.

• Parameter. Parameter to have its value changed.

• Minimum Value. Initial value to be assigned to the selected parameter.

• Maximum Value. Final value to be assigned to the selected parameter.

• Type. Determines whether the value of the parameter is changed linearly or logarithmically. If it is

logarithmic, the parameter value is changed by a base-10 logarithmic function, taking into account the

minimum and maximum values.

• Interval. This is the step size for changing the value of the parameter. The parameter starts with the

minimum value and its value is increased considering the entered interval. At each change, the selected

metric is evaluated. The experiment is finished when the maximum value for the parameter is reached.

• Metric. Metric to be evaluated.

At the end of an experiment, a graph is generated and the results are displayed, as we can see in the Figures 267

and 268. If you want to run another experiment in the same model, using the button “New Experiment" in 267 is

an easier way to do this. You will return to the window "Options for Experiment" (Figure 266).

Figure 267: Graph from a DTMC Experiment

182

Figure 268: Results from a DTMC Experiment

Mercury can also calculate the following metrics when selected.

• Sojourn times. Time spent in each state. Listing 9 shows sojourn times computed for each state of our

DTMC (see Listing 9).

• Recurrence time. Time required to return to each state. After reaching one state and moving to another,

how long does it take to return to the previous state? It is determined by this metric. Listing 10 shows the

recurrence times calculated for each state of our DTMC (see Listing 10).

183

Listing 9: DTMC Stationary Result - Sojourn Times

Mon Aug 15 10:13:01 BRT 2020

Performing stat ionary analysis . . .

Done ! (elapsed time : 0s)

##############################

S0=0.6586375715496784

S1=0.280391409717778

S2=0.0609710187325436

Hold time : S0=11.494252873563209

Hold time : S1=5.000000000000001

Hold time : S2=2.0

−−−−−−− Metrics −−−−−−−

Metric0 =1.0

−−−−−−−−−−−−−−−−−−

Results have been written into the f i l e :

C: \ Users\Thiago\Chapter_DTMC_Modelos−StationaryAnalysis . t x t

Listing 10: DTMC Stationary Result - Recurrence Time

Mon Aug 15 10:14:50 BRT 2020

Performing stat ionary analysis . . .

Done ! (elapsed time : 0)

##############################

S0=0.625

S1=0.3125

S2=0.0625

Recurrence time : S0=1.6

Recurrence time : S1=3.1999999999999993

Recurrence time : S2=15.999999999999996

−−−−−−− Metrics −−−−−−−

Metric0 =1.0

−−−−−−−−−−−−−−−−−−

Results have been written into the f i l e :

C: \ Users\Thiago\Chapter_DTMC_Modelos−StationaryAnalysis . t x t

184

6.3.2 DTMC Transient Analysis

Transient analysis computes time-dependent probabilities useful for evaluating the behavior of modeled systems

at a given time. Figure 269 shows the window “Transient Analysis”.

Figure 269: Transient Analysis Window

When solving transient metrics of DTMCs, the user can define:

• Steps for which the analysis should be performed (default: 100).

• Error (default:10−7) to be taken into account when calculating the results.

• Initial state probabilities (default value: 1 for the first inserted state, 0 for the remaining states). These

probabilities are defined by clicking the “Set initial state probability” button (see Figure 270).

185

Figure 270: Initial State Probability Dialog

The internal step size affects the accuracy of the results and also the time needed to calculate the metrics.

When you click the “Run” button, the solution algorithm is triggered. Once it is finished, the results are displayed

in the text area at the bottom of the “Transient Analysis” window and written to a plain text file containing the

project filename with the suffix “-TransientAnalysis.txt”.

The “Transient Analysis” window also allows the user to choose between Point or Curve for the analysis.

Point is the default option and displays probabilities for states only for the specific time point. Curve writes all

state probabilities calculated from time equal to zero to the specified value to a simple text file.

The mean time to absorption (MTTA) can be calculated by checking “Mean Time to Absorption (failure)”.

MTTA is displayed after the state probabilities in the “Results” section. For MTTA calculation, the user can

also define a metric by using the keyword MTTA as an expression. The absorption probability for each state is

another available metric. Listing 11 shows MTTA and absorption probability using an absorbing DTMC as an

example.

Listing 11: DTMC Transient Result - MTTA and Absorption Probability

Mon Aug 15 11:22:58 BRT 2020

Performing transient analysis . . .

Results have been written into the f i l e :

C: \ Users\Thiago\Chapter_DTMC_Modelos2−TransientAnalysis . t x t

Matrix P has been written into the f i l e :

C: \ Users\Thiago\Chapter_DTMC_Modelos2−MatrixP . t x t

Done ! (elapsed time : 1s)

##############################

S3=7.888609052210118E−31

S4=1.0

−−−−−−− Metrics −−−−−−−

186

Metric0 =7.888609052210118E−31

−−−−−−−−−−−−−−−−−−−−−

Absorption probabi l i ty to s t a t e S4 : 1.0

Mean Time to Absorption (MTTA) : 2.0

6.3.3 Sensitivity Analysis

Mercury calculates partial derivative sensitivity indices from DTMCs through sensitivity analysis. These indices

indicate what effect each input parameter has on a metric. Mercury provides for DTMC models a sensitivity

analysis considering min/max values for each parameter and this analysis supports the ”Design of Experiments”

(DoE) method in addition to the ”Sensitivity Indices” method. This sensitivity analysis is shown in Section 2.5

and can be accessed from the menu Evaluate -> DTMC Evaluation -> Sensitivity Analysis (min/max values).

187

7 ET Modeling and Evaluation

The first step to start modeling ET models on Mercury is to insert leaf nodes into the graph. In the ET view (see

Figure 271), the user must right-click on the “Init” root node present on the canvas, select the “Add node” button

(see Figure 272), and specify the number of leaf nodes to be added (see Figure 273). Notice that, as the first node

is the root, it cannot be deleted. Then, the specified number of events will be added to the model, as shown in

Figure 274.

Figure 271: ET View

Figure 272: Floating Menu for Adding Events from a Node

Other leaf nodes can also be added by following the same procedure as stated before, i.e., clicking on an

intermediary node with the right mouse button, selecting “Add node,” and specifying the number of new nodes

to be added.

188

Figure 273: Dialog for Adding Events from a Node

Figure 274: Added Events to the Model

After adding nodes, the hierarchical tree is updated in the left-side panel, as depicted in Figure 275.

Figure 275: ET Hierarchical Tree

The initial probabilities associated with each connection between nodes are defined as 1.0, or 100%. The user

can define the probability for each transition by double-clicking the arc connecting two nodes or by right-clicking

on the ending node of the specific arc and selecting the “Properties”, then clicking the “Edit” button on the

definition section (see Figures 276 and 277). Figure 278 shows the window where a transition probability can be

defined. The user can edit the expression using the visual editor by selecting “Probability Expression” in the

“Name Type” dropdown or by plain text by selecting “Plain Text” in the same dropdown. Notice that the dialog

shown in Figure 277 can also be used to edit the name of an event and add a description to it. Event names can

be defined using expressions containing LaTeX syntax.

It is worth noting that when modeling ETs, the sum of probabilities for all output arcs must equal one for

189

each node. Otherwise, it is not possible to perform evaluations on the model. Figure 279 shows an error that

occurs when this condition is not met.

Figure 276: Properties of a Node

Figure 277: Edit an Event

The ET view has the toolbar shown in Figure 280. The parameter list is accessed through the button depicted

in Figure 281. When adding nodes, each parameter that appears in each arc will be added to the parameter

list, as shown on the panel on the left side (see Figure 282). The user can add a parameter by clicking the “+

Add definition” button, remove a parameter by selecting it and clicking the “- Remove definition” button, edit a

definition by clicking the “...” button in the “Name” column at the end of the parameter’s name, or edit its value

by double-clicking the value in the “Value” column.

The metrics button, shown in Figure 283, displays the metrics defined by the user. Basically, a metric is an

expression used to evaluate a property of the model. You can evaluate the probability of the events in the ET and

perform some operations with the probabilities, either by operating with other events’ probabilities or other

variables added as parameters. Once the metrics button is clicked, you can see on the left panel the ET’s metrics

list, as shown in Figure 284. The “Name” column shows the metric’s name, “Expression” shows the metric’s LaTeX

190

Figure 278: Edit the Associated Probability to an Arc

Figure 279: Event Transition Probabilities Error

Figure 280: Toolbar of the ET View

Figure 281: Definitions (Parameters) Button on the Toolbar of the ET View

expression to be evaluated, and the last column “Value” shows the resulting value when the metric’s expression

is evaluated.

Metrics can be created by clicking the “+ Add metric” button on the left panel. Then, a new metric will be

created in the metrics list. Clicking on any of the “...” buttons at the metric’s row will open the “Metric Editor”

dialog, where the metric’s name and expression can be entered. The metric’s name must be a plain text. The

191

Figure 282: Parameters Panel of the ET View

“Value” field is disabled and will be populated when the model is evaluated. Finally, the “Expression Editor” field

must be filled with expressions, as shown in Figure 285. The parameter’s name must be wrapped in “[]” and “[/]”.

Basic math operations can be performed in the “Expression Editor”.

The zoom buttons, shown in Figure 286, are used to enhance the visibility of the model, especially when it

becomes too large to fit on the entire screen. The user can return to the original viewport scale by clicking the

default magnifying glass, increase the zoom by clicking on the magnifying glass with a plus sign, or decrease the

viewport scale by clicking on the magnifying glass with a minus sign.

The save matrix button, shown in Figure 287, is used to transform the entire model into a matrix that displays

every associated probability, as discussed in the DTMC section, allowing the users to export the probability

Figure 283: Metrics Button on the Toolbar of the ET View

192

Figure 284: Metrics Panel of the ET View

Figure 285: Metric Editor dialog

Figure 286: Zoom Buttons on the Toolbar of the ET View

matrix of a model to a text file.

Figure 287: Save Matrix Button on the Toolbar of the ET View

193

7.1 ET Evaluation

Mercury allows us to evaluate ETs models. This evaluation gives us the probabilities of all nodes of our ET (Initial

node, chances node, and leaf nodes) and all metrics defined in the model. It is available from the Evaluate -> ET

Evaluation menu (see Figure 288).

Figure 288: ET Evaluation Menu

The model is evaluated and the result is shown in a new window (Figure 289).

Notice that for the evaluation of this model type, we do not need to set anything to do this. To enable an

evaluation, the only requirement is that the sum of the outgoing probabilities of each initial or chance node

must equal 1.

7.1.1 ET Experiment

To repeat the evaluation many times by simply changing the probabilities, you can use the Experiment feature.

This feature is accessible via the same menu as the evaluation (see Figure 288).

When we enable this option, the next window appears (Figure 290).

• The parameter option is the variable (definition) that you want to modify.

• The minimum value is the initial value that the selected parameter will have in the first evaluation.

• The maximum value is the last value that the specified parameter may assume.

• The interval (step size) is the increment that the parameter undergoes in each evaluation. Depending on

this step, the maximum value may or may not be reached.

• The metric is the metric for which you want to obtain the result. In this mode, we cannot obtain results for

every metric at the same time.

194

Figure 289: Evaluation Result Window

Figure 290: Options for Experiment

It is important to emphasize that for each source event the sum of its outgoing probabilities must equal 1.

To ensure this condition, Mercury performs a proportional redistribution of the remaining probabilities when

the selected parameter is a transition probability of an event. In this case, the adjusted transition probability of

195

any other outgoing event P (Ei) associated with the same source event can be calculated using the following

expression:

P (Ei) = (1−P (condition)) · P (Ei)∑
j P (E j)

(1)

where P (condition) is the selected parameter and
∑

j P (E j) is the sum of all initial transition probabilities

of the other outgoing events associated with the source event linked to the selected transition probability.

This expression ensures that the other adjusted transition probabilities P (Ei) maintain their proportional

relationships while satisfying the condition that the sum of the transition probabilities of the same source event

is equal to 1.

For example, if there is a selected transition probability such as P (A∪B) and two other transition probabilities

P (E2) and P (E3) associated with the same source event, the remaining transition probability becomes 1−P (A∪B)

and P (E2) and P (E3) are adjusted as in the equations 2 and 3:

P (E2) = (1−P (A∪B)) · P (E2)

P (E2)+P (E3)
(2)

P (E3) = (1−P (A∪B)) · P (E3)

P (E2)+P (E3)
(3)

This approach ensures that the transition probabilities for the other outgoing events are redistributed pro-

portionally, while the total sum of 1 for the transition probabilities of the source event is retained. This approach

can be applied to any number of outgoing events, ensuring that the probabilities are adjusted proportionally.

Initially, the experiment result will be presented in a plot format (see Figure 291), but, if the plot is closed

the result can be obtained in the format of a common evaluation (Figure 289). Here, each point on the curve

represents an evaluation with different values for the selected parameter. Consequently, this also affects the

other probabilities of the same node to which the selected parameter is linked.

196

Figure 291: Experiment Result

8 EFM Modeling and Evaluation

Energy Flow Model (EFM) is proposed to estimate the sustainability impact and cost of data center architectures

without overstepping the energy constraints of each device. This is accomplished with algorithms that traverse

the EFM and compute the cost, estimate the environmental impact, and verify the energy flow. The EFM

evaluation functionality is responsible for estimating the sustainability impacts of a system (e.g., model) in terms

of its lifetime exergy (available energy) consumption. This functionality also computes the total cost that is

composed by initial cost and operational cost. The initial cost represents the budged needed to obtain the

system components in order to build the system. The operational cost is the cost to maintain the system in the

operational mode.

Figure 292 depicts an EFM model representing a system composed of four components and it demonstrates

how the energy flow occurs between them.

Now we will introduce the EFM toolbar and its available resources. This toolbar is visible when the EFM view

is selected. Figure 293 shows the buttons present on it and their descriptions are detailed below.

1. Default Cursor. Activates the selection mode. This mode makes it possible to select model components in

the drawing area.

197

Figure 292: EFM Example

Figure 293: EFM Toolbar

2. Insert Component to Canvas. Add datacenter components to the canvas. The first step to use this

functionality is to select the EFM component on the left side panel (see Figure 294). After the selection,

the user needs to click on this button and, after that, she needs to click in the drawing area on the location

desired to put the new component.

Figure 294: EFM Left-Side Panel

198

3. Add a New Component to the EFM Project. Add new data center components to the project. By clicking

on it a dialog appears allowing the modeler to add a component to the project. In order to accomplish this,

the user should select the component in this new dialog and confirm the selection by clicking on the “Add”

button (see Figure 295). The new component will be available on the left side as shown by Figure 294. It is

important to highlight that this function only adds components to the EFM project. The new component

is not inserted into the drawing area at this moment. So, in order to do that, it is necessary to click on the

“Insert Component to Canvas” button (2), after selecting the desired component on the left side panel.

Figure 295: Inserting an EFM Component to the Project

199

4. Undo. Undo the last changes in the drawing area.

5. Redo. Redo the last changes in the drawing area.

6. Delete. Remove the selected components from the drawing area.

7. Standard Scale. Apply the standard scale to the drawing area.

8. Scale Up Image. Each click scales up the drawing image by 10% percent (zoom in).

9. Scale Down Image. Each click scales down the drawing image by 10% percent (zoom out).

Now, we will describe how to perform evaluations on an EFM project by using the Mercury tool. The first step

in order to perform the sustainability evaluation is to create an EFM model. To add power or cooling components

in the model, users should click on the start icon (“Add New Component to the Project” button). Once clicked

on that button, a window appears in which it is possible to select the component to be added to the EFM project

(see Figure 295). The list of components on the left side panel is updated after the addition of a component. The

next step is to add the selected component on the left side panel to the drawing area as depicted in Figure 296.

The user needs to click on the power plug icon on the toolbar (“Add Component to Canvas” button), after that

she must click into the drawing area. These last steps need to be performed for each component that composes

the evaluated system.

Figure 296: Inserting a Component into the Drawing Area

Once all components are inserted into the drawing area, the user can connect them including SourcePoints

and TargetPoint as shown by Figure 297.

200

Figure 297: EFM Example

By right-clicking on a component and left-clicking on the “Properties” menu that appears provides a way to

edit its properties as shown by Figure 298.

Figure 298: Component Properties

Additionally, it is important to stress that users have to set the demanded power on the TargetPoint (for

power system) or on the SourcePoint (for cooling system). This is done by with a right-click on the Source or

Target points and selecting the option “Properties”. After that, a dialog appears and the demanded power may be

entered (see Figure 299).

201

Figure 299: SourcePoint and TargetPoint Property

Once the EFM model is completed, evaluations can be conducted in order to extract some metrics. Eval-

uations are performed by selecting the desired option on the “EFM Evaluation” menu group available in the

“Evaluate” menu on the main menu, as depicted by Figure 300. Five EFM evaluations are available. It is possible

to evaluate cost, exergy, energy flow, the last ones combined, and flow optimization.

Figure 300: EFM Evaluation Menu

Once selected the combined option, the EFM evaluation of cost, exergy, and energy flow is selected. To

conduct those evaluations, users have to provide the EFM parameters depicted in Figure 301. The parameters

that the user may provide are availability, period to be considered (in hours), and electricity cost (per kWh).

202

Figure 301: EFM Parameters Evaluation

Finally, the result is presented as demonstrated by Figure 302.

Figure 302: EFM Results

203

In this example, the result indicates that the energy flow evaluation returns true meaning that the power

constraints present on each device were respected. However, in case this result is false, the Mercury tool shows

the component in which the constraint was crossed (see Figure 303). In this window of results, the user has also

an option to export the results to a spreadsheet (e.g., a file .xls), or plot a selected metric.

Figure 303: EFM Results with the Energy Flow Evaluation False

8.1 Power Load Distribution Algorithm - PLDA

A Power Load Distribution Algorithm (PLDA) is proposed to minimize the electrical energy consumption of the

EFM models [6]. The PLDA is based on the Ford-Fulkerson algorithm, which computes the maximum possible

flow in a flow network [7]. The network is represented by a graph, where the transport capacity of the devices is

defined in the edges. The algorithm begins by traversing the graph, searching for the best flows between two

specific points in the graph. If a particular path lacks the capacity to support all of the flow demanded, then the

residual flow is redirected to other paths. The Priority First Search (PFS) is the adopted method for selecting the

path between the nodes [8, 9]. The PFS chooses the path according to the highest electrical capacities of nodes

in the graph [10]. Figure 304 shows how to call the PLDA function.

204

Figure 304: PLDA Optimization Function

Figure 305 depicts the results of the PLDA algorithm, with the minimum energy consumed, PUE, and DCiE

highlighted.

Figure 305: PLDA Optimization Results

205

8.1.1 Example of PLDA execution

Figure 306 illustrates the EFM model of a specified architecture. In the example, all the edge weights are set to

the default value, one. The power flow is computed by traversing the graph from the target to the source node.

Figure 306: EFM Model

Figure 307 depicts the EFM model after the execution of the PLDA. It should be noted that the weights on the

edges have changed, optimizing the power flow through a best weights distribution.

Figure 307: EFM Model After PLDA Execution

Table 1 presents a summary of the results obtained by the PLDA. Column "Improvement" depicts the im-

provement. The system efficiency is improved by over 4.2%; consequently, the associated cost and sustainability

figures are improved by 4.2% and 20.4%, respectively. Availability results were also computed with RBD/SPN

models, but are not included here.

206

Table 1: Summary Results Before and After PLDA Execution

Metric Before After Improvement (%)

Availability (%) 0.99999226 0.99999226 0
Number of 9 s 5.111 5.111 0
Downtime (hs) 0.0677 0.0677 0
Input Power (kW) 1,312.63 1,259.64 4.2
System Efficiency (%) 76.18 79.38 4.2
Operational Cost (USD) 1,264,849 1,213,784 4.2
Operational Exergy (GJ) 9,859.32 8,188.11 20.4

8.2 Power Load Distribution Algorithm in Depth search (PLDA-D)

A Power Load Distribution Algorithm - Depth (PLDA-D) is proposed to minimize the electrical energy consump-

tion of the EFM models [6]. It is an evolution of the PLDA algorithm (see Section 8.1), applies for the same

problem but with a big difference in the technique of graph search. In the PLDA-D the model EFM is searched

in-depth, choosing always the best path in a depth search to distribute the weights of the edges. The PLDA-D is

based in the Bellman [11] and Ford and Fulkerson [7] flow algorithm, but with many adaptations. The PLDA-D

is divided into three phases: initialize, kernel, and the search for the best path. Figure 308 demonstrates how to

call the PLDA-D function. Figure 309 depicts the results generated by applying the PLDA-D algorithm, with the

minimum energy consumed, PUE, and DCiE highlighted.

Figure 308: PLDA-D Optimization Function

207

Figure 309: Results for Applying the PLDA-D Optimization

8.2.1 Example of PLDA-D Execution

Figure 310 illustrates the step-by-step of the PLDAD execution, highlighting some variables, edges, and weights.

Lets consider the model represent by Figure 310.a with three electrical components A, B , C , each one with

efficiency 80, 90 and 95 % respectively. This means that if a component has efficiency of 90%, 10% of the energy

that passes through it is lost. The other symbols of the model are S for the node Sour ce, with can be represented

by an electrical utility and T , for the node Tar g et , with can be represented by a computer room.

In the example, the demand (Dem) and efficiency (E f) values are known. The value of the Tar g et node

Acc is set to one. The others accumulated costs (Acc) are set to zero and the edge weights are set to the default

value one, respectively, as depicted in Figure 310.a, a perfect representation of an EFM model. The phase one

of the PLDAD algorithm is represented by the Figure 310.b when all the variables are initialized in all vertices.

Actual cost (ActCost) to infinite, child to null (C hi ld) and accumulated cost to zero (Acc).

Phase two starts in the Figure 310.c following to the Figure 310.h. At this stage, the best path is selected

according to the efficiency of each component, through a scan in-depth and respecting the limits of capacity of

each equipment. In Figure 310.c the values of the ActualCost and Accumul atedCost are computed and the

best child is chosen, according to the lower value of the variable ActCost . This value is used to select the best

child for a given node.

A very important step in this phase is represented by Figure 310.g. After the calculations of the variables

Acc and ActCost , it was verified that the ActCost for the current path (3.39) was less than the ActCost of the

208

Figure 310: Exemple PLDAD Execution

previous path (3.68) to get to the Sour ce node. Thus, the Sour ce node has a change in the values of its variables

and the best C hi ld now is the node B and not more node A. In other words, it is less costly to get to the source

node for B by A, so B represents a better path than A.

Figure 310.h represents the end of phase three. For this example, the best path from note Target to Source is:

Tar g et ,C ,B ,Sour ce. In Figure 310.i the flow is distributed, according to the weights of the edges. With these

values, the EFM computes the minimum possible value for the input power, reducing all the values associated

with data center power consumption.

209

9 Comments

Along with the modeling features, Mercury allows you to annotate models and highlight model elements. The

RBD and FT views provide adding comments and highlighting objects by right-clicking anywhere on the drawing

area, then selecting the option “Add comment”, as shown in Figure 311. The comment will be placed at the cursor

position, and can be moved anywhere in the drawing area. In the SPN, CTMC and DTMC views, comments and

highlighting can be added to the drawing area by activating the “Comment” button on the toolbar, as shown

in Figure 312. Then, move the cursor in the drawing area and click to place the comment. Comments are not

available in the EFM and ET views.

Figure 311: Adding comments on RBD view

Once a comment is created, an object with a “Comment” label will be available on the drawing area, as

shown in Figure 313. The comments behave and are shown equally in the RBD, FT, SPN, CTMC and DTMC

views.

210

Figure 312: Adding comments on SPN view

Figure 313: Added comment on RBD view

211

9.1 Editing a comment

Double-clicking the “Comment” object will open a dialog for editing the comment, as shown in Figure 314.

The Edit Comment dialog has two checkboxes: “Enable border” and “Enable background color”. Checking the

“Enable border” option enables a combobox to select the color of the border of the comment. Checking “Enable

background color” enables a combobox to select the color of the background of the comment.

The Edit Comment dialog has a typing area and a resulting area. Typing LaTeX expressions in the typing area

will render the expressions at the resulting area. The resulting area shows how the comment will become once

editing is saved. Figure 315 shows how to edit a comment with LaTeX expression and background color, and

Figure 316 shows the resulting comment in the CTMC view.

Figure 314: Editing a comment

212

Figure 315: Editing comment with LaTeX expression and background color

Figure 316: Edited comment with LaTeX expression and background color

213

9.2 Highlighting with comments

Highlighting elements in the drawing area is possible using comments in the RBD, FT, SPN, CTMC and DTMC

views. This can be done by editing a comment, as shown in Figure 317, removing the text from the typing area,

checking the “Enable border” option and disabling the “Enable background color” option. Then, you can select

any of the available colors in the combobox next to the “Enable border” option.

Figure 317: Highlighting with comments

The resulting highlight area is shown in Figure 318. It can be resized as shown in Figure 319 and 320. Finally,

the highlight area can be moved anywhere in the drawing area to highlight any element. Figure 321 shows a SPN

place highlighted.

Figure 318: Resulting highlight area

214

Figure 319: Resizing highlight area

Figure 320: Resizing highlight area result

Figure 321: Highlighted element

215

9.3 Hiding comments

Hiding comments can be done in the RBD and FT views by right-clicking anywhere in the drawing area and

selecting the “Hide Comments” option, as shown in Figure 322. This can be done in the SPN, CTMC and DTMC

views by clicking the “Hide Comments” button in the toolbar, as shown in Figure 323. When comments are

hidden, they can be shown by disabling the “Hide Comments” option available by right-clicking anywhere in the

drawing area of the RBD or FT views, or by clicking the “Hide Comments” button in the SPN, CTCM or DTMC

views’ toolbar.

Figure 322: Hiding comments in FT view

216

Figure 323: Hiding comments in SPN view

9.4 Disabling comments selection

Disabling comments selection is also possible in the Mercury tool. This option is available in the RBD and FT

views by right-clicking in the drawing area, as shown in Figure 324. Additionally, this option is available in the

SPN, CTMC and DTMC views through the toolbar button “Disable Comments Selection”, as shown in Figure 325.

Re-enabling comments selection can be done following the same step.

Disabling comments selection can be useful to avoid moving comments when you try to move elements of

the model. The selected elements of the CTMC as shown in Figure 326, are an example of this.

Disabling comments selection is specially useful in the FT view. Differently from the RBD, SPN, CTMC

and DTMC views, in the FT view comments are always in front of the elements of the model, thus, disabling

comments selection is essential to manipulate the FT elements.

217

Figure 324: Disabling comments selection in FT view

Figure 325: Disabling comments selection in the toolbar

10 Mercury Scripting Language

10.1 Introduction

The Mercury scripting language was developed to allow more flexibility in evaluating models. To run Mercury

scripts, we can use a command line interface (CLI) or access the ”Script Editor” available within the Mercury

GUI. The advantage of using this language in conjunction with the CLI tool is the ability to automate project

workflow, evaluate models, extract metrics, and generate reports and graphs automatically. In addition, the

language offers other advantages that are not supported when modeling via the graphical interface.

• Improved support for hierarchical modeling; each model can call another model and use its results as

internal parameters.

• Improved support for symbolic evaluations and experiments. The parameters of a model can be defined

as variables left open. We can change these variables and re-evaluate the model to measure the impact of

these parameters on specific metrics.

• Support for Petri net transitions with a phase-type delay. This family of distributions can be used to

approximate any distribution that is not an exponential distribution.

218

Figure 326: Selecting elements with comments selection disabled in CTMC view

• Support for hierarchical transitions in SPN models. This type of transition can be used to reduce model

complexity or to express a recurring structure in the model that can be more easily reused. Some tools [1]

[12] support hierarchical SPN models only for colored Petri nets.

10.2 Script Structure

We define the script syntax using BNF notation as follows:

Listing 12: Grammar for Mercury Scripts

<scr ipt > : : = <models> <main_block>

<models> : : = <model> <models> | <model>

<model> : : = <SPN_model> | <CTMC_model> | <DTMC_model> | <RBD_model> | <ET_model>

A script consists of a model declaration section containing one or more models of the following types:

SPN (stochastic Petri net), CTMC (continuous-time Markov chain), DTMC (discrete-time Markov chain), RBD

(reliability block diagram), or ET (event tree). Support for the FT and EFM formalisms will be included in the

next release. At the end of the model section is the main block, which has the following syntax:

219

Listing 13: Grammar for the Main Block

<main_block> : : = <main_block> " { "

<main_statements>

" } "

<main_statements> : : = <statement> " ; " <main_statements> |

<statement> " ; "

<statement> : : = <print_statement > |

<attribution_statement > |

<for_statement >

In the main block we can change variables, solve models and print the obtained results. We change variables

to define parameters for a model and collect metric results using the function solve. The ”for” command has

been added to allow us to run experiments. With this command we can change a variable based on a list of

values.

In Figure 327 we show a CTMC model, and in Listing 14 we present the corresponding Mercury script. First,

we define a CTMC model named CTMCModel and declare its states, transitions, and metrics. The transition

rates are defined as a function of the parameters lambda and mu. In the main block, we define values for these

parameters and evaluate the ”m1” metric of the CTMC model. The result is stored in the variable named aval.

Finally, we print the content of this variable using the command println.

Figure 327: CTMC Model Example

Listing 14: CTMC Model

CTMC CTMCModel{

s t a t e S0 ;

s t a t e S1 ;

s t a t e S2 ;

s t a t e S3 ;

t r a n s i t i o n S0 −> S1 (rate = lambda) ;

220

t r a n s i t i o n S1 −> S0 (rate = mu) ;

t r a n s i t i o n S1 −> S2 (rate = lambda) ;

t r a n s i t i o n S2 −> S1 (rate = mu) ;

t r a n s i t i o n S2 −> S3 (rate = lambda) ;

t r a n s i t i o n S3 −> S2 (rate = mu) ;

metric m1 = s t a t i o n a r y P r o b a b i l i t y (s t = S0) ;

}

main{

lambda = 0.00001;

mu = 0 . 0 1 ;

aval = solve (model = CTMCModel, metric = m1) ;

print ln (aval) ;

}

10.2.1 Reserved Words

In Table 2 we list the reserved words of the language.

state transition rate markov up
RBD block hierarchy series parallel
top model MTTF MTTR main
print println for in out
metric solve value SPN SubNet
place timedTransition immediateTransition substitutionTransition tokens
subnet inputs outputs delay inhibitors
weight priority enablingFunction serverType
event eventTransition probability solveMetric

Table 2: Reserved Words

These words cannot be used as identifiers (of models, variables, functions), metrics, user-defined functions,

or as keys in a dictionary structure. For example, for the stationary probability of CTMC metrics, we use the key

"st" to indicate the state for which we want to evaluate the probability. We cannot use the word "state" because

this is a reserved word used to specify states in a CTMC model.

In the following sections, we describe the syntax for each supported formalism: CTMCs, RBDs, SPNs and

ETs.

221

10.3 Continuous Time Markov Chain

In Listing 15 we describe the syntax for declaring CTMC models. A CTMC model contains definitions of states —

with the reserved word state—, transitions — with the reserved word transition—, and metrics. For availability

models, a state may also receive an annotation up after the identifier. This annotation defines states in which

the system is considered operational.

Listing 15: Grammar for CTMC Models

<CTMC_block> : : = "CTMC" " { "

<ctmc_statements>

" } "

<ctmc_statements> : : = <ctmc_statement> " ; " <ctmc_statements> |

<ctmc_statement> " ; "

<ctmc_statement> : : = <state_statement > |

<transition_statement > |

<metric > ;

<state_statement > : : = " s t a t e " < i d e n t i f i e r > |

" s t a t e " < i d e n t i f i e r > "up"

<transition_statement > : : = " t r a n s i t i o n " < i d e n t i f i e r > "−>" < i d e n t i f i e r >

" (" " rate " "=" <numeric_exp> ") "

<metric > : : = " metric " < i d e n t i f i e r > = <metric_name> " (" <metric_parameters > ") " |

<metric_name>

The supported metrics for CTMC models are: i) availability; ii) reward rate for states; iii) steady-state

probability; and iv) transient probability.

222

10.3.1 Availability

The availability metric does not require any parameters. This metric returns the sum of all stationary probabilities

for states annotated with the keyword up. In the following script, we show an availability model for a redundant

private cloud manager.

Listing 16: Availability Metric for a CTMC Model

markov RedundantGC{

s t a t e fu up ;

s t a t e fw ;

s t a t e f f ;

s t a t e uf up ;

s t a t e uw up ;

t r a n s i t i o n fw −> fu (rate = sa_s2) ;

t r a n s i t i o n fu −> f f (rate = lambda_s2) ;

t r a n s i t i o n f f −> uf (rate = mu_s1) ;

t r a n s i t i o n uf −> uw(rate = mu_s2) ;

t r a n s i t i o n uw −> fw (rate = lambda_s1) ;

t r a n s i t i o n fw −> uw(rate=mu_s1) ;

t r a n s i t i o n uw −> uf (rate=lambdai_s2) ;

t r a n s i t i o n uf −> f f (rate=lambda_s1) ;

t r a n s i t i o n fw −> f f (rate=lambdai_s2) ;

t r a n s i t i o n fu −> uw(rate=mu_s1) ;

metric aval = a v a i l a b i l i t y ;

}

10.3.2 Reward Metric

This metric calculates the sum of rates associated with each state. The parameters defined for this metric are a

list of pairs: < st ate_name >=< value >. The metric calculates the sum of the products of each rate and the

stationary probability associated with the state. The states that do not receive a rate are implicitly associated

with a zero rate. Below we list an example of a model with a reward metric. We recommend that the reader check

that the metrics m1 and m3 give the same result.

223

Listing 17: Reward Metric for a CTMC Model

markov Teste {

s t a t e s1 up ;

s t a t e s2 up ;

s t a t e s3 ;

t r a n s i t i o n s1 −> s2 (rate = lambda) ;

t r a n s i t i o n s2 −> s3 (rate = lambda) ;

t r a n s i t i o n s3 −> s2 (rate = mu) ;

t r a n s i t i o n s2 −> s1 (rate = mu) ;

metric m1 = a v a i l a b i l i t y ;

metric m2 = reward (s1 = 1/5 , s2 = 1/4 , s3 = 1/3) ;

metric m3 = reward (s1 = 1 , s2 = 1) ;

}

10.3.3 Stationary and Transient Probabilities

The most common metrics used in CTMCs are stationary and transient probabilities associated with states.

The stationary probability of a state S corresponds to the fraction of time the model remains in that state. The

transition probability of a state S within a time T, corresponds to the probability to be in this state S, after T time

units from the initial time (t = 0).

In Mercury language, we use the metric stationaryProbability(st = S) to obtain the stationary probability

associated with a state S. For the transition probability, we also need to specify the time T and the initial

probability for each state. This corresponds to the probability that the model is in that state at time T = 0. In the

script syntax, the states that are not specified in the list of initial probabilities are given an initial probability of 0.

It is important to emphasize that the sum of all initial probabilities must equal 1, otherwise an exception will be

thrown.

In the following, we will show how to obtain the metrics for stationary and transient probabilities using a

CTMC model as an example.

Listing 18: Stationary and Transient Metrics for a CTMC Model

markov Test3 {

s t a t e s0 ;

s t a t e s1 ;

s t a t e s2 ;

s t a t e s3 ;

224

s t a t e s4 ;

t r a n s i t i o n s0 −> s2 (rate = a) ;

t r a n s i t i o n s2 −> s1 (rate = b) ;

t r a n s i t i o n s1 −> s4 (rate = a) ;

t r a n s i t i o n s2 −> s3 (rate = b) ;

t r a n s i t i o n s3 −> s4 (rate = c) ;

t r a n s i t i o n s4 −> s0 (rate = c) ;

metric m1 = reward (s0 = 1 , s1 = 2) ;

metric m2 = s t a t i o n a r y P r o b a b i l i t y (s t = s2) ;

metric t0 = t r a n s i e n t P r o b a b i l i t y (

time = 100 ,

s t = s0 ,

i n i t i a l P r o b a b i l i t i e s = (s0 = 0 . 5 , s3 = 0.5)

) ;

}

10.4 Reliability Block Diagram

An RBD model consists of:

• Exponential blocks representing components with an associated parameter for mean time to failure and

mean time to repair;

• Hierarchical blocks evaluated by calling other external models;

• Series/parallel arrangements of other blocks;

• Declaration of top-level block; and

• RBD metrics.

Listing 19 shows the grammar for RBD models.

225

Listing 19: RBD Grammar

<RBD_model> : : = "RBD" " { " <rbd−statements > " } "

<rbd−statements > : : = <rbd_statement> " ; " <rbd_statements > |

<rbd_statement> " ; "

<rbd_statement> : : = <block_statement >

| <series_block_statement >

| <parallel_block_statement >

| <top_block_statement >

| <rbd_metrics >

<block_statement > : : = <exp_block_statement > |

<hierarchy_block_statement >

<exp_block_statement > : : = " block " < i d e n t i f i e r >

" (" "MTTF" "=" <numeric_exp> " ,"

"MTTR" "=" <numeric_exp> ") "

<hierarchy_block_statement > : : = hierarchy < i d e n t i f i e r > " ("

" a v a i l a b i l i t y " "=" <numeric_expression > ") " ; " |

hierarchy < i d e n t i f i e r > " ("

" r e l i a b i l i t y " "=" <numeric_expression > ") " ; "

<series_block > : : = " s e r i e s " < i d e n t i f i e r > " (" < i d e n t i f i r e _ l i s t > ") " " ; "

<paral lel_block > : : = " p a r a l l e l " < i d e n t i f i e r > " (" < i d e n t i f i r e _ l i s t > ") " " ; "

<top_block > : : = "top" < i d e n t i f i e r > " ; "

We have four metrics available for RBD models:

• availability;

• mean time to failure (MTTF);

• mean time to repair (MTTR); and,

226

• reliability.

The first three metrics do not require parameters: Steady-State Availability, MTTF, and MTTR. The reliability

and instantaneous availability metrics, on the other hand, require an time parameter. Considering the model

shown in Figure 328, we created its script definition as shown in Listing 20.

Figure 328: RBD Representing a Cloud Node [13]

Listing 20: RBD Script

t = 100;

RBD Model{

block HW(MTTF = 4000.0 , MTTR = 7 2 . 0) ;

block SO(MTTF = 2500.0 , MTTR = 1 2 . 0) ;

block KVM(MTTF = 4000.0 , MTTR = 2 4 . 0) ;

block NC(MTTF = 4000.0 , MTTR = 2 4 . 0) ;

s e r i e s s0 (HW, SO, KVM, NC) ;

top s0 ;

metric av = a v a i l a b i l i t y ;

metric r e l = r e l i a b i l i t y (time = t) ;

metric mttf = mttf ;

metric mttr = mttr ;

}

main{

av = solve (Model , av) ;

r e l = solve (Model , r e l) ;

mttf = solve (Model , mttf) ;

mttr = solve (Model , mttr) ;

pr int ln (" A v a i l a b i l i t y : " . . av) ;

pr int ln (" R e l i a b i l i t y : " . . r e l) ;

227

print ln ("Mean time to f a i l u r e : " . . mttf) ;

pr int ln ("Mean time to repair : " . . mttr) ;

}

10.5 Stochastic Petri Nets

In the Mercury scripting language, a Petri net is described in terms of places and transitions. Places can

be defined with an (optional) initial marking. There are three types of transitions: immediate, timed, and

substitution. ”Substitution” transitions allow us to create modular and reusable Petri nets. This functionality

is only available in the scripting language. Another exclusive feature of the scripting language is support for

phase-type distributions. In this section, we will show a simple SPN as an example that contains only exponential

and immediate transitions.

Listing 21 shows the grammar in the notation BNF for describing SPN models in the Mercury language.

Basically, we have three distinct statements: place statements, transition statements, and metric statements.

The arcs connecting transitions and places are defined as parameters within the transitions: inputs, outputs,

and inhibitors. Timed transitions have delay and server type as parameters. If the ”server type” parameter is

omitted, it defaults to ”SingleServer”. Immediate transitions have as parameters (optional): weight, priority and

an enabling function. Metrics are defined in the form of a string representing a reward metric, which is also used

in the graphical interface.

Listing 21: Grammar for SPN Models

<SPN−Model> : : = "SPN" " { "

<spn_statements>

" } "

<spn_statements> : : = <spn_statement> " ; " <spn_statements> |

<spn_statement> " ; "

<spn_statemnt> : : = <place_statement > |

<transition_statement > |

<metric_statement >

<place_statement > : : = " place " < i d e n t i f i e r > |

" place " < i d e n t i f i e r > " (" <numeric_exp> ") "

<transition_statement > : : = <timed_transition > |

<immediate_transition > |

<subst i tut ion_transi t ion >

228

<timed_transition > : : = " timedTransition " < i d e n t i f i e r > " { "

[" inputs " "=" " (" < a r c _ l i s t > ") " " ,"]

[" outputs " "=" " (" < a r c _ l i s t > ") " " ,"]

[" i n h i b i t o r " "=" " (" < a r c _ l i s t > ") " " ,"]

[" serverType " "=" { " SingleServer " |

" I n f i n i t e S e r v e r " } " ,"]

[" delay " "=" <delay_exp > " ,"]

" } "

<immediate_transiton > : : = " immediateTransition " < i d e n t i f i e r > " { "

[" inputs " "=" " (" < a r c _ l i s t > ") " " ,"]

[" outputs " "=" " (" < a r c _ l i s t > ") " " ,"]

[" i n h i b i t o r " "=" " (" < a r c _ l i s t > ") " " ,"]

[" weight " "=" <numeric_exp> " ,"]

[" p r i o r i t y " "=" <numei_exp> " ,"]

" } "

To illustrate the syntax for modeling SPNs with the Mercury scripting language, we have proposed a model

for an M/M/1/K queue based on the [14]. This model is shown in Figure 329.

Figure 329: SPN Model Representing an M/M/1/k Queue[14]

The g ener ate transition generates tokens corresponding to service requests. Each generated token is

stored in the g ener ated place and then a selection is made. The token can be queued for processing by the

server if there is a free slot in the queue (tokens in the ”free” place). Otherwise, the token is discarded, which

is represented by triggering the immediate ”loss” transition. The ”free” place controls the triggering of this

transition by an inhibitor arc. The tokens waiting in the queue are placed in the ”buffer”. The transition ”service”

229

represents the processing of the requests. Since this is an M/M/1/K queue, we have only one server that can

handle all requests. Therefore, the server semantics assigned to the transition ”service” is SINGLE SERVER.

Listing 22 shows the script for running the stationary analysis of the SPN model described earlier. The

parameter method of the function stationaryAnalysis can only have the values ”direct” or ”iterative”. ”Direct”

corresponds to the Direct - GTH (Grassmann-Taksar-Heyman) method. ”Iterative” corresponds to the Gauss-

Seidel method.

Listing 22: Script for Stationary Analysis

k = 10;

mu = 2 ;

lambda = 1 ;

SPN Model{

place buffer ;

place free (tokens= 10) ;

place generated ;

immediateTransition enter (

inputs = [generated , free] ,

outputs = [buffer]

) ;

immediateTransition l o s s (

inputs = [generated] ,

i n h i b i t o r s = [fre e]

) ;

timedTransition generate (

outputs = [generated] ,

delay = lambda

) ;

timedTransition service (

inputs = [buffer] ,

outputs = [fre e] ,

delay = mu

) ;

230

metric m1 = stat ionaryAnalysis (method = " d i r e c t " ,

expression = "P{# buffer >0}") ;

}

main {

setIntegerParameters (" k " , "mu" , "lambda ") ;

m1 = solve (Model ,m1) ;

print ln (m1) ;

}

Listing 23 shows the script for running the stationary simulation for this model. Below we describe each

parameter of thefunction stationarySimulation.

• confidenceLevel. The confidence interval for determining the metrics.

• maxRelativeError. Defines the maximum relative error, which is one of the stop conditions of the

simulation.

• minFiringTransitions. Defines the minimum number of firings for each transition in the model. This

number of firings is another condition for stopping the simulation. If you enter a value of 0, the simulator

does not consider the number of firings to stop the simulation. If you enter a value greater than 0, the

simulation will stop when the number of firings for each transition is equal to the specified value.

• warmup. Sets the minimum warm-up period. The warm-up phase is the period when the model is not in

steady state and the metrics are not collected during this period. There are a few methods to estimate

whether the model has entered a steady state phase, but Mercury requires the user to set a value for the

warm-up phase. Since we are evaluating stochastic models, it is expected that the warm-up time will not

be an accurate value for every simulation run. Therefore, the user defines a minimum warm-up time.

Once the global simulation time is equal to or greater than the user-defined warm-up time, the simulation

begins collecting metrics, generating batches, and calculating statistics.

• batchsize. Sets the number of samples that will constitute each batch in the simulation.

• maxTimeMilliseconds. It is used to define the maximum simulation time. This time corresponds to

the physical time and must be specified in seconds. If it is set to 0, the simulator will not consider this

parameter. If one of the stop conditions is not met before this maximum time is reached (maximum

relative error or number of firings for each transition), the simulation will stop when this time is reached.

231

Listing 23: Script for Stationary Simulation

k = 10;

mu = 2 ;

lambda = 1 ;

SPN Model{

place buffer ;

place free (tokens= 10) ;

place generated ;

immediateTransition enter (

inputs = [generated , free] ,

outputs = [buffer]

) ;

immediateTransition l o s s (

inputs = [generated] ,

i n h i b i t o r s = [fre e]

) ;

timedTransition generate (

outputs = [generated] ,

delay = lambda

) ;

timedTransition service (

inputs = [buffer] ,

outputs = [fre e] ,

delay = mu

) ;

metric m1 = stationarySimulation (parameters = (warmup=0 ,

confidenceLevel =90 ,

maxRelativeError =0.05 ,

minFiringTransitions = 0 ,

maxTimeMilliseconds =0 ,

232

batchSize=30

) , expression = "P{# buffer >0}") ;

}

main {

setIntegerParameters (" k " , "mu" , "lambda ") ;

m1 = solve (Model ,m1) ;

print ln (m1) ;

}

Listing 24 shows how to run a transient simulation using the scripting language. Below we describe each

parameter of the function transientSimulation.

• time. The evaluation time.

• expression. The expression to be evaluated.

Listing 24: transientSimulation Function

metric [name] = transientSimulation (time =[time] , expression = " [exp] ") ;

10.6 Event Tree

In the Mercury scripting language, an Event Tree is described by nodes, which represent the events of the model,

and by transitions between the nodes, which are described in the form of event probabilities. There are three

types of nodes: initial, intermediate, and leaf.

An Event Tree script can be created by defining an ET object, with a name and a scope. In the ET object

scope, event and eventTransition must be defined to create the event and the transitions between events, as

shown in Listing 25. The script’s syntax does not differ between the different types of nodes. Metrics can also be

defined in the script.

Listing 25: Grammar for ET Models

<et_model> : : = "ET" < i d e n t i f i e r > " { "

<et_statements >

" } "

<et_statements > : : = <et_statement > " ; " <et_statements > |

<et_statement > " ; "

233

<et_statemnt > : : = <et_statement > |

<event_statement > |

<event_transition_statement > |

<metric_statement >

<event_statement > : : = " event " < i d e n t i f i e r > " ; "

<event_transition_statement > : : = " eventTransition " < i d e n t i f i e r >

"−>" < i d e n t i f i e r > " ("

" probabi l i ty " "=" <numeric_expression > ") " " ; "

<metric_expression > : : = " metric " < i d e n t i f i e r > = " solveMetric " " ("

" expression " "=" <numeric_expression > ") " " ; "

To illustrate the syntax for modeling ET with the Mercury scripting language, we have proposed the following

model, which is shown in Figure 330.

Figure 330: Example ET Model

This model has four terminal events (leaf nodes), Event 2, E3, E5 and E6; one initial event (initial node), Init;

and one intermediate event (intermediate node), E4. The arcs that connect the events are the event transitions,

where each probability of the event transition is a definition (variable), and their values must be less than 1.

Listing 26 shows the generated script for ET model described earlier.

Listing 26: Script for Evaluate an Event Tree

ET Model{

event I n i t ;

event Event 2 ;

event E3 ;

234

event E4 ;

event E5 ;

event E6 ;

eventTransition I n i t −> Event 2 (probabi l i ty = 0 . 2) ;

eventTransition I n i t −> E3 (probabi l i ty = 0 . 3) ;

eventTransition I n i t −> E4 (probabi l i ty = 0 . 5) ;

eventTransition E4 −> E5 (probabi l i ty = 0 . 4) ;

eventTransition E4 −> E6 (probabi l i ty = 0 . 6) ;

metric m0 = solveMetric (expression ="P{ Event 2}") ;

}

main{

m0 = solve (Model , m0) ;

print ln ("m0: " . . m0) ;

}

235

References

[1] R. German, C. Kelling, A. Zimmermann, and G. Hommel, “Timenet: a toolkit for evaluating non-markovian

stochastic petri nets,” Performance Evaluation, vol. 24, no. 1, pp. 69–87, 1995.

[2] A. Desrochers and R. Al-Jaar, Applications of Petri Nets in Manufacturing Systems: Modeling, Control, and

Performance Analysis. IEEE Press, 1995.

[3] H. Pham, “System reliability concepts,” in System Software Reliability. Springer, 2006, pp. 9–75.

[4] R. Matos Junior, A. Guimaraes, K. Camboim, P. Maciel, and K. Trivedi, “Sensitivity analysis of

availability of redundancy in computer networks,” in CTRQ 2011, The Fourth International Conference

on Communication Theory, Reliability, and Quality of Service. IARIA, Apr 2011, pp. 115–121. [Online].

Available: http://www.thinkmind.org/index.php?view=article&articleid=ctrq_2011_6_10_10047

[5] R. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and K. S. Trivedi, “Sensitivity analysis of server virtualized

system availability,” IEEE Transactions on Reliability, vol. 61, no. 4, pp. 994–1006, 2012.

[6] G. Callou, P. Maciel, D. Tutsch, and J. Araujo, “Models for dependability and sustainability analysis of

data center cooling architectures,” in Dependable Systems and Networks (DSN), 2012 IEEE International

Conference on, Jun 2012, pp. 1 –6.

[7] L. Ford and D. R. Fulkerson, Flows in networks. Princeton Princeton University Press, 1962, vol. 1962.

[8] J. Ferreira, G. Callou, and P. Maciel, “A power load distribution algorithm to optimize data center electrical

flow,” Energies, vol. 6, no. 7, pp. 3422–3443, 2013.

[9] J. Ferreira, G. Callou, J. Dantas, R. Souza, and P. Maciel, “An algorithm to optimize electrical flows,” in

Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. IEEE Computer

Society, 2013, pp. 109–114.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algorithms. MIT press Cambridge,

2001, vol. 2.

[11] R. Bellman, “On a routing problem,” DTIC Document, Tech. Rep., 1956.

[12] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M. Westergaard, S. Christensen,

and K. Jensen, “Cpn tools for editing, simulating, and analysing coloured petri nets,” in Applications and

Theory of Petri Nets 2003. Springer, 2003, pp. 450–462.

[13] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “An availability model for eucalyptus platform: An analysis of

warm-standy replication mechanism,” in Systems, Man, and Cybernetics (SMC), 2012 IEEE International

Conference on. IEEE, 2012, pp. 1664–1669.

236

http://www.thinkmind.org/index.php?view=article&articleid=ctrq_2011_6_10_10047

[14] R. German, “A concept for the modular description of stochastic petri nets (extended abstract,” in Proc. 3rd

Int. Workshop on Performability Modeling of Computer and Communication Systems, 1996, pp. 20–24.

237

A Syntax of CTMC Measures, Parameters, State Names, and State Rewards

Output measures for CTMC models created in the GUI must be defined according to the following notation:

”P{””}” = probability of being in the declared state;

”R{””}” = reward rate of being in the declared state;

”R{}” = steady-state reward of the system; and

”LOG{””}” = base-10 logarithmic function.

The formal syntax for output measures, names of states and parameters, and transition rates is defined as

follows:

Listing 27: Syntax of Components for CTMC Models

<output_measure> : : = <output_value >

| ‘ ‘ − ’ ’ <output_measure>

| ‘ ‘ (’ ’ <output_measure > ‘ ‘) ’ ’

| <output_measure> <num_op> <output_measure>

<output_value > : : = <probability_measure >

| <reward_measure>

| <real_constant >

| <integer_value >

<probability_measure > : : = ‘ ‘P{ ’ ’ < state_name > ‘ ‘ } ’ ’

<reward_measure> : : = ‘ ‘R{ ’ ’ { <state_name >} ‘ ‘ } ’ ’

<logarithmic_measure > : : = ‘ ‘LOG{ ’ ’ < expression > ‘ ‘ } ’ ’

<state_name> : : = { < i d e n t i f i e r >}+

<parameter_name> : : = { < i d e n t i f i e r >}+

< transi t i on_r ate > : : = <expression >

<reward_rate > : : = <expression >

<expression > : : = <real_value >

| ‘ ‘ − ’ ’ <expression >

238

| ‘ ‘ (’ ’ <expression > ‘ ‘) ’ ’

| <expression > <num_op> <expression >

<num_op> : : = ‘ ‘ + ’ ’ | ‘ ‘ − ’ ’ | ‘ ‘ * ’ ’ | ‘ ‘ / ’ ’

<real_value > : : = <parameter_name>

| < real_constant >

| < integer_constant >

<real_constant > : : = { < d i g i t > } + ‘ ‘ . ’ ’ { < d i g i t >}+

<integer_constant > : : = { < d i g i t >}+

< i d e n t i f i e r > : : = { l e t t e r | d i g i t }+

< l e t t e r > : : = ‘ ‘A’ ’ \ textendash ‘ ‘ Z ’ ’ | ‘ ‘ a ’ ’ \ textendash ‘ ‘ z ’ ’

< d i g i t > : : = ‘ ‘ 0 ’ ’ \ textendash ‘ ‘ 9 ’ ’

The basic symbols have the following meanings:

“symbol”: terminal symbol

< symbol > : non-terminal symbol

symbol1 | symbol2 : symbol 1 or symbol2

{symbol}+ one or more occurrences of symbol

symbol1–symbol2 : range of values between symbol1 and symbol2

239

B Syntax of SPN Metrics, Guard Expressions, and Arc Multiplicity Depen-
dent on Marking.

In this section, we present the specification in terms of SPN metrics, guard expressions, and arc multiplicity

dependent on marking. We present a formal syntax description using the Backus-Naur form (BNF).

Three different expressions can be used in the Mercury tool (see Listing 28). SPN expressions are represented

as “Metrics”, “GuardExpressions”, and “MarkingDependentMultiplicites”. “Metrics” are used to represent the

evaluated metrics and can be a probability, an expectation, or a base-10 logarithmic function taking the value of

a given expression as input. “GuardExpressions” are used to represent logical expressions to enable/disable the

firing of transitions. “MarkingDependentMultiplicites” are numeric expressions that are evaluated as a function

of the current marking to a particular arc multiplicity.

Listing 28: Syntax of Components for SPN Models

<Metric > : : = ‘ ‘P{ ’ ’ < logic_condition > ‘ ‘ } ’ ’

| ‘ ‘E{ ’ ’ < marking_function > ‘ ‘ } ’ ’

| ‘ ‘LOG{ ’ ’ < expression > ‘ ‘ , base } ’ ’

| ‘ ‘POWER{ < expression > , exponent } ’ ’

| ‘ ‘MIN{ < expressionList > } ’ ’

| ‘ ‘MAX{ < expressionList > } ’ ’

<MarkingDependentMultiplicity > : : = <if_else_exp >

<GuardExpression> : : = <logic_expression >

<if_exp > : : = { ‘ ‘ IF (’ ’ < logic_condition > ‘ ‘) : (’ ’ < expr > ‘ ‘) ’ ’ }

< i f _ l i s t > : : = <if_exp > | < i f _ l i s t > <if_exp >

<if_else_exp > : : = < i f _ l i s t > + ‘ ‘ELSE(’ ’ < expr > ‘ ‘) ’ ’

| <expr>

<expr> : : = <real_value >

| ‘ ‘ − ’ ’ < expr>

| ‘ ‘ (’ ’ < expr > ‘ ‘) ’ ’

| ‘ ‘ (’ ’ < expr > ‘ ‘) ’ ’ <num_op> ‘ ‘ (’ ’ < expr > ‘ ‘) ’ ’

<real_value > : : = < i d e n t i f i e r >

240

| <real_const >

| <int_value >

<real_const > : : = { < d i g i t > } + ‘ ‘ . ’ ’ { < d i g i t >}+

<logic_condition > : : = <comp>

| ‘ ‘ (’ ’ < logic_condition > ‘ ‘) ’ ’

| ‘ ‘NOT(’ ’ < logic_condition > ‘ ‘) ’ ’

| ‘ ‘ (’ ’ < logic_condition > ‘ ‘) ’ ’AND‘ ‘ (’ ’ < logic_condition > ‘ ‘) ’ ’

| ‘ ‘ (’ ’ < logic_condition > ‘ ‘) ’ ’OR‘ ‘ (’ ’ < logic_condition > ‘ ‘) ’ ’

<comp> : : = <mark_function><comp_op><mark_function>

<comp_op> : : = ‘ ‘ / = ’ ’ | ‘ ‘ = ’ ’ | ‘ ‘ < ’ ’ | ‘ ‘ > ’ ’ | ‘ ‘ <= ’ ’ | ‘ ‘ >= ’ ’

<mark_function> : : = ‘ ‘ (’ ’ < mark_function > ‘ ‘) ’ ’ <num_op> ‘ ‘ (’ ’ < mark_function > ‘ ‘) ’ ’

| ‘ ‘ (’ ’ < mark_function > ‘ ‘) ’ ’

| <int_value >

<num_op> : : = ‘ ‘ + ’ ’ | ‘ ‘ − ’ ’ | ‘ ‘ * ’ ’ | ‘ ‘ / ’ ’

<int_value > : : = <int_const >

| < i d e n t i f i e r >

| <mark>

<int_const > : : = { < d i g i t >}+

< i d e n t i f i e r > : : = { < l e t t e r >| < d i g i t >}+

< l e t t e r > : : = ‘ ‘A’ ’ \ textendash ‘ ‘ Z ’ ’ | ‘ ‘ a ’ ’ \ textendash ‘ ‘ z ’ ’

< d i g i t > : : = ‘ ‘ 0 ’ ’ \ textendash ‘ ‘ 9 ’ ’

<mark> : : = ‘ ‘# ’ ’ < i d e n t i f i e r >

241

B.1 GENERAL COMMENTS ABOUT SPN SYNTAX

In this syntax, all elements of a given expression are separated by parentheses. For example, suppose we want

to evaluate the probability that there are more than two tokens in place P1 and zero tokens in place P2. The

corresponding expression is:

P {(#P1 > 2)AN D(#P2 = 0)}//CORRECT SYNTAX

IMPORTANT. Spaces within expressions are not allowed. Therefore, the following expression is not allowed.

P {#P1 > 2AN D#P2 = 0}//WRONG SYNTAX

In general, guard expressions consist of various comparisons composed of ANDs, ORs, and NOTs. For

example, let us look at the following expression:

(#P1 = 1)AN D(#P2 = 2)//CORRECT SYNTAX

This expression can be used as an activation function to trigger a transition only if the place P1 has one token

and P2 has two tokens. Again, spaces are not allowed within the expressions and all subexpressions must be

joined by parentheses.

#P1 = 1AN D#P2 = 2//WRONG SYNTAX

Regarding ”if-else” expressions. The language supports if-else expressions to represent MarkingDependent-

Multiplicity. This component is used to represent the number of tokens in places. When used in the language,

these expressions can change the place marking based on other place markings. For example, suppose a model

with two places P1 and P2 and the marking of P1 is one if P2 has no tokens and zero if P2 has tokens. In this case

the marking of P1 should be

I F (#P2 = 0) : (1)ELSE(0)

It is also possible to have nested if-else expressions. To explain this, we extend the previous example and

assume that the model has 4 places (P1, ..., P4) and the marking of P1 is one if P2 has no tokens, zero if P3 has

one token, two if P4 has no tokens, and three otherwise. The corresponding expression should be defined as

follows:

I F (#P2 = 0) : (1)I F (#P3 = 1) : (0)I F (#P4 = 0) : (2)ELSE(3)

This expression is similar to the nested if, elseif, ..., else expressions in standard programming languages

such as C or Java.

242

C EMA Tool.

The Expectation-Maximization (EM) algorithm is an iterative technique that allows estimation of parameters in

statistical models with incomplete or hidden data. In the context of the EM algorithm:

• Expectation (E-step): The conditional probability of the hidden data is estimated based on the current

parameters.

• Maximization (M-step): The parameters are updated to maximize the expected value of the log-likelihood.

Each point in the set has a certain probability of belonging to a certain cluster. However, these probabilities

are initially unknown. Moreover, we face another challenge: the parameters that define the distribution of each

cluster are also unknown. Amidst these uncertainties, we introduce the Erlang-r distribution, a relevant choice

where the value of "r" represents the number of phases of the distribution. Given this complexity, we could

compute the maximum log likelihood, which is ideally the probability of the data. However, due to the hidden or

unknown nature of clusters, computing this likelihood directly becomes complicated. As a solution, we work

with the expectation of the incomplete log likelihood, which is maximized to find appropriate estimates of the

unknown parameters.

Key formulas:

• Probability of point Xi belonging to cluster Zi :

Zi ∼ Categorical(π1,π2, . . . ,πn)

Xi ∼ Dist
(
µi

)

P
(
Zi = j

)=π j

• Erlang-r distribution:

fX (x) = µ
(
µx

)r−1 e−µx

(r −1)!

• Maximum log-likelihood expectation:

Q
(
θ,θ0)= N∑

i=1

K∑
k=1

Ai ,k
[

log P (Xi |Zi = k,θ)+ logπk
]

• Posterior probability:

Ai ,k = P
(
Zi = k

∣∣Xi ,θ0)= P
(
Xi

∣∣Zi = k,θ0
)
πk∑K

k ′=1 P
(
Xi

∣∣Zi = k ′,θ0
)
πk ′

243

• Maximization:

For π:

π j =
∑N

i=1 Ai , j∑N
k=1 (Ak,1 + Ak,2 + . . .+ Ak,n)

- For θ:

θ j =
r
∑N

i=1 Ai ,k∑N
i=1 Xi Ai , j

The EMA algorithm consists of the following steps:

1. Initialize the parameters;

2. Derive the log likelihood expectation;

3. Calculate posterior probabilities;

4. Using posterior probabilities, find and update the optimal parameters; and

5. Repeat steps 2 to 4 until convergence.

To perform an evaluation using the EMA tool through Mercury:

1. Open the EMA tool from the Tools menu.

2. Load the dataset by clicking the Load button.

244

There are now three actions available:

3. Statistics. Selecting this option will display a summary of the statistics for the dataset, as follows:

245

4. Simple Evaluation. A menu for the fitting will be displayed. The parameters are:

• Epsilon: Stopping criterion of the EM algorithm.

• Max. iterations: Maximum number of iterations (will be used if Epsilon is not reached).

• Number of clusters: Number of clusters to be used in the fitting process.

• Phases: Number of distribution phases in each Cluster.

5. Random Search. The process of determining the number of phases in the fitting is not always trivial. To

assist this process, we have implemented an algorithm that randomly searches for the number of clusters

and phases based on the Bayesian Information Criterion (BIC). BIC is a criterion for model selection from

a finite set of models. Lower values for BIC are generally preferred. The parameters for the random search

are:

246

• Epsilon: Stopping criterion of the EM algorithm.

• Max. iterations: Maximum number of iterations (will be used if Epsilon is not reached).

• Number of runs: Number of runs in which the algorithm determines random values for the parame-

ters.

• Min. cluster: Minimum number of clusters used in the fitting process.

• Max. clusters: Maximum number of clusters used in the fitting process.

• Min. phases: Minimum number of distribution phases in each cluster.

• Max. phases: Maximum number of distribution phases in each cluster.

247

The Mercury Scripting Language
Cookbook

Danilo Oliveira

Abstract This document presents a series of modeling problems, and shows
how the Mercury Scripting Language (MSL) makes easy to solve them. Our
objective is to show the strong points of the language in different pratical
contexts.

1 Introduction

MSL (Mercury Scripting language) is a language provided by the Mercury
tool [1] 1 for creating and evaluating models. The scripts can be executed
by command line interface (CLI), via graphical interface, or inside a Java
program (as we will show later in this document). The main objective of
the scripting language is to allow the use of Mercury evaluation engine with
greater flexibility than the GUI provides. The scripting language enables, for
example, using shell scripts to automate an evaluation workflow. The script-
ing language offers an additional advantage that is the increased support to
hierarchical evaluation [2] [3]. Input parameters of any model can be defined
as function of an output metric defined by another model, independent of
the modeling formalism. The Mercury scripting language currently supports
SPN (Stochastic Petri Net), RBD (Reliability Block Diagram), EFM (Energy
Flow Model) and CTMC (Continuous Time Markov Chain) models.

We structured this material as a “cookbook ”, that provides a series of
“recipes”. Each recipe contains a practical example that emphasizes some
capability of the language:

Danilo Oliveira
Centro de Informática, UFPE, e-mail: dmo4@cin.ufpe.br

1 Available at: http://www.modcs.org/?page_id=1630

1

2 Danilo Oliveira

• Recipe #1 - Hierarchical modelling + composite metrics — In
this example we show how to structure a set of models hierarchically, and
how to declare a metric that is function of another metric;

• Recipe #2 - Experiments and sensitivity analysis — In this exam-
ple we show how to perform quick experiments with the for loop, and how
to perform sensitivity analysis with the percentage difference, and design
of experiments techniques;

• Recipe #3 - Reliability block diagram with variable number of
blocks — This example shows how to define a RBD model that does not
have a fixed number of blocks, and how to change this model;

• Recipe #4 - Energy Flow model + availability model — This
example shows how to link an energy flow model with a dependability
model in order to compute certain metrics. This linkage turns possible
to see how the dependability parameters impacts the energy flow model
metrics;

• Recipe #5 - Using phase type distributions in a Stochastic Petri
Net Model — In this example we see how to use a phase-type distribu-
tion (e.g.: hypoexponential, hyperexponential, Erlang) as delay on a SPN
model;

• Recipe #6 - Sensitivity analysis on a performability model —
In this example we illustrates how to compose a performability model by
composing a dependability and a performance model. Then, we show how
to measure the impact of the dependability parameters on performance
metrics;

• Recipe #7 - Executing a script inside a Java program — In this
example we show how to run scripts from a Java program, and obtaining
references to model and metrics programatically.

2 Recipes

2.1 Recipe #1 - Hierarchical modelling + composite
metrics

In this recipe, we use as example the hierarchical model for the non-
redundant cloud architecture presented in [4]. Figure 1 show the top level
RBD model for the system. It is composed by a frontend server, a node
server, a storage volume, and the video streaming service that runs on the VM
deployed in the node. Except the storage volume components, all blocks are
evaluated by another submodels. The frontend and the node servers are mod-
eled by RBDs displayed on figures 2 and 3, respectively. The video streaming
service is modeled by the CTMC presented in Figure 4.

The Mercury Scripting Language Cookbook 3

Fig. 1

Fig. 2

Fig. 3

Fig. 4

The script for evaluating the system’s availability is presented on Listing 1.
On the preamble off the script, we set all the parameters for all models. After
the preamble, we start declaring the models. Since the script is evaluated
once, and there is no forward declarations, we must declare the submodels
before the top level model. If a model A use the result of a metric defined by
a model B as one of its parameters, the model B must be declared before the
model A.

The models NRFrontend, and Node are simple RBDs composed by a set
of blocks with exponential MTTF and MTTF. Each exponential block is
declared using the “block” keyword followed by the MTTF and MTTR pa-
rameters enclosed by parenthesis. The value of a model parameter can be any
numeric expression containing: parenthesis, arithmetic operators (*, +, /, -
), number literals, variables, and functions. The availability metric is declared

4 Danilo Oliveira

using the “metric” keword, followed by the metric identifer, and the metric
type. In this case, we use the “availability” metric, that takes no parameters.

The model NRService is represented by a CTMC with five states, and in
only one state (the “Up” state) the system is available. For CTMC availabil-
ity models, there is three ways to compute the availability. The first is to
annotate the “up states” with the “up” keyword, and use the “availability”
metric. Alternatively, we can use CTMC expressions following the syntax de-
scribed in the Mercury manual, by using the “ctmcExpression” metrics, that
takes as parameter a string containing the expression. The “up” annotation
and the “availability” metric is a shorthand for availability models, while the
“ctmcMetric” is a more general way to compute CTMC metrics.

On the top level model, we create a RBD with a series arrangement of
blocks. But, instead of using simple exponential blocks, we use hierarchical
blocks, by using the “hierarchy” keyword. For availability models, we must
define the “availability” parameter for each hierarchical block. We can use
any numeric expression for this parameter. Using the “solve” function allow
us to solve a metric defined by another model and, in this way, composing
models hierarchically. The NRArchitecture model represents the top level
model depicted in Figure 1. It defines three metrics. The metric named “av”
computes the steady state availability for the RBD. The metrics named “uav”
and “downtime” represents composite metrics, i.e., metrics that are defined
as function of another metrics. A composite metric is declared by using a
numeric expression enclosed by parentheses.

Finally, we create the “main” block, that is the section of the script where
we can set parameters, evaluate models, and print the computed results using
the “print” and “println” functions. These functions accepts any numeric or
string expression as argument, and outputs its values in the console. Using the
“..” operator we can concatenate string with numeric values and presenting a
more readable output.

1 lambda_ap = 1/788.4;
mu_ap = 1;

3 lambda_vlc = 1/336;
mu_vlc = 1;

5 lambda_vm = 1/2880;
mu_vm = 1;

7 mu_in = 1/0.019166;

9 mttf_hw = 8760;
mttr_hw = 100/60;

11 mttf_os = 2895;
mttr_os = 1;

13 mttf_kvm = 2990;
mttr_kvm = 1;

15 mttf_nc = 788.4;
mttr_nc = 1;

17 mttf_clc = 788.4;
mttr_clc = 1;

19 mttf_cc = 2788.4;

The Mercury Scripting Language Cookbook 5

mttr_cc = 1;
21 mttf_walrus = 2788.4;

mttr_walrus = 1;
23

mttf_volume = 100000;
25 mttr_volume = 1;

27 RBD NRFrontend{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

29 block os(MTTF = mttf_os , MTTR = mttr_os);
block cc(MTTF = mttf_cc , MTTR = mttr_cc);

31 block clc(MTTF = mttf_clc , MTTR = mttr_clc);
block walrus(MTTF = mttf_walrus , MTTR = mttr_walrus);

33

series s1(hw, os, clc , cc , walrus);
35

top s1;
37

metric av = availability;
39 }

41 RBD Node{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

43 block os(MTTF = mttf_os , MTTR = mttr_os);
block kvm(MTTF = mttf_kvm , MTTR = mttr_kvm);

45 block nc(MTTF = mttf_nc , MTTR = mttr_nc);

47 series s1(hw, os, kvm , nc);

49 top s1;

51 metric av = availability;
}

53

CTMC NRService{
55

state fap;
57 state Up up;

state fapvlc;
59 state fvlc;

state fall;
61

transition fap -> Up(rate = mu_ap);
63 transition fap -> fapvlc(rate = lambda_vlc);

transition fap -> fall(rate = lambda_vm);
65 transition Up -> fap(rate = lambda_ap);

transition Up -> fvlc(rate = lambda_vlc);
67 transition Up -> fall(rate = lambda_vm);

transition fapvlc -> fap(rate = mu_vlc);
69 transition fapvlc -> fvlc(rate = mu_ap);

transition fapvlc -> fall(rate = lambda_vm);
71 transition fvlc -> Up(rate = mu_vlc);

transition fvlc -> fapvlc(rate = lambda_ap);
73 transition fvlc -> fall(rate = lambda_vm);

6 Danilo Oliveira

transition fall -> Up(rate = mu_in);
75

metric av = availability;
77 metric av2 = ctmcExpression(expression = "P{Up}");

}
79

RBD NRArchitecture{
81 hierarchy frontend(

availability=solve(NRFrontend , av)
83);

85 hierarchy node(
availability=solve(Node , av)

87);

89 block volume(MTTF = mttf_volume , MTTR = mttr_volume);

91 hierarchy service(
availability=solve(NRService , av)

93);

95 series s1(frontend , node , volume , service);

97 top s1;

99 metric av = availability;
metric uav(1 - av);

101 metric downtime(uav * 365 * 24);
}

103

main{
105 a = solve(NRArchitecture , av);

println("Availability: " .. a);
107

u = solve(NRArchitecture , uav);
109 println("Unavailability: " .. u);

111 d = solve(NRArchitecture , downtime);
println("Annual downtime: " .. d);

113 }

Listing 1 Script for a cloud video streaming service model

2.2 Recipe #2 - Experiments and sensitivity analysis

In this recipe, we will use the model defined in the previous recipe. One of
the greatest strengths of the scripting language is the ease to change a model
parameter and observe how the metrics reacts by this change. By modifying
the contents of a variable that is used as a model parameter (using the assign
operator “=”), and re-solving the metric of interest using the “solve” function,

The Mercury Scripting Language Cookbook 7

we will get a new result that corresponds to the updated model. The relying
on this feature, the scripting language provides a convenient way to perform
experiments, i.e., outputting the result of a metric by changing a parameter
over a list, and provide powerful functions to perform sensitive analysis.

2.2.1 Performing experiments using the “for” loop

To observe how a metrics reacts by changing a parameter over a list of
values, we use the “for” loop available in the scripting language. Listing 2
shows an example. In this example, we change the “mttf_hw” parameter
over the list enclosed by square brackets. For each iteration, we solve the “av”
metric of the NRArchitecture model. Then, we print the parameter value,
followed by a comma, and the metric result. By outputting the result this
way, we can create a comma separated value (CSV) file that will be used by
producing a chart by another tool (e.g. R, gnuplot, Excel, etc.)

In Figure 5 we show how to run the script in the command line interface.
We run the Mercury program by typing “java -jar mercury.jar” on the ter-
minal. Without any command line arguments, the graphical interface will be
displayed. To evaluate the script, we must pass the “-cli” argument, followed
by the file name of the script. Any “print” or “println” output will be sent to
the console. To save the results in a file, we can use the redirect operator “>”
of the shell.

1 main{
for mttf_hw in [730, 1460, 2190, 2920, 3650, 4380, 5110, 5840,

6570, 7300, 8030, 8760]{
3 a = solve(NRArchitecture , av);

println(mttf_hw .. ", " .. a);
5 }

}

Listing 2 Performing an experiment with the for loop

2.2.2 Sensitivity analysis

The language has two predefined functions for sensitivity analysis: percent-
age difference, and design of experiments. The technique of sensitivity analy-
sis by means of percentage difference consists in changing one parameter over
a list of values, while holding the other parameters fixed, and calculating the
percentage difference in the output metric considered. We perform this step
for each parameter into our list, and sort them from the highest difference to
the lowest. The formula for obtaining the percentage difference is [5]:

SI =
Dmax −Dmin

Dmax

8 Danilo Oliveira

Fig. 5

, where SI is the sensitivity index for the selected parameter, Dmax is the
maximum value of the output metric, and Dmin is the minimum value.

The Listing 3 shows the usage of the percentageDifference function. This
function has three mandatory parameters: i)model_, which defines the model
that will be used in the analysis; ii) metric_, which defines the metric from
the model that will be used; iii) parameters, which represents the list of
parameters that will be used in the analysis, and its respective values. Each
parameter is set with a list of values enclosed by square brackets. Optionally,
the user can define only two values: a minimum and a maximum value, and
set the samplingPoints parameters, that specifies the number of intermediate
points that will be generated for each list. The function prints in the console
the list of parameters and respective sensitivity indexes, ranked from least to
most influential parameter. Figure 6 shows the output for the script displayed
on Listing 3.

main{
2 av = solve(NRArchitecture , av);

println(av);
4

percentageDifference(
6 model_ = "NRArchitecture",

metric_ = "av",
8 samplingPoints = 5,

10 parameters = (
lambda_ap = [1/2000 , 1/788.4] ,

12 mu_ap = [1/5, 1],
lambda_vlc = [1/500, 1/336],

14 mu_vlc = [1/5, 1],
lambda_vm = [1/4000 , 1/2880],

The Mercury Scripting Language Cookbook 9

16 mu_vm = [1, 5],
mu_in = [1/0.019166 , 1/0.1],

18 mttf_hw = [8760, 10000],
mttr_hw = [100/60 , 400/60],

20 mttf_os = [2895, 4000],
mttr_os = [1, 5],

22 mttf_kvm = [2990],
mttr_kvm = [1, 5],

24 mttf_nc = [788.4, 2000],
mttr_nc = [1, 5],

26 mttf_clc = [788.4, 2000],
mttr_clc = [1, 5],

28 mttf_cc = [2788.4 , 4000],
mttr_cc = [1, 5],

30 mttf_walrus = [2788.4 , 4000],
mttr_walrus = [1, 5],

32 mttf_volume = [100000],
mttr_volume = [1, 5]

34),

36 output = (
type = "swing",

38 yLabel = "Steady -state availability",
baselineValue = av

40)
);

42 }

Listing 3 Performing sensitivity analysis with the percentage difference technique

Fig. 6 Output of the percentageDifference function

10 Danilo Oliveira

The output optional parameter is used to produce charts for each parame-
ter. This parameter has three sub-parameters: i) type, which defines the type
of chart that will be produced; ii) yLabel, which defines the label of the y axis
in a chart; iii) baselineValue, for displaying a horizontal line in the chart for
comparing each point with a baseline value. Currently, the only chart type
available is “swing”, that displays all charts inside a GUI window. In the next
release, we plan to include support for generating R and Gnuplot scripts for
producing charts. Figure 7 displays the generated charts for the script shown
above.

Fig. 7 Charts generated automatically by the percentageDifference function

The Design of Experiments (DOE) technique consists in taking a list of
parameters and, for each parameter (called factor), a list of values (called
levels), and performing a series of experiments with the possible combinations
of factor and values. There are various possible designs for an experiment. One
possible alternative is to run the experiment for all combination of levels using
all factors. This is called a full factorial design. A drawback of this alternative
is that, even for a small list of parameters, the number of experiments to be
performed could be very large. One solution is to use only two levels - this
is called a two-level factorial design. Even using only two levels, the number
of experiments can be very large, if we have many parameters, and grows
exponentially for each added parameter. To overcome this issue, we may
perform a fractional factorial design, that uses only a subset of a factorial
design. The Mercury tool allow us to perform two-level, full, and fractional
designs, and compute the effects of each factor as described in [6].

Listing 4 shows the usage of the designOfExperiment function. It takes the
same three mandatory parameters than the percentageDifference function: i)

The Mercury Scripting Language Cookbook 11

model_, metric_, and iii) parameters. There is no samplingPoints parameter,
and each parameter receives a list with only two values: a min, and a max
value.

main{
2 designOfExperiment(

model_ = "NRArchitecture",
4 metric_ = "av",

parameters = (
6 lambda_ap = [1/2000 , 1/788.4] ,

mu_ap = [1/5, 1],
8 lambda_vlc = [1/500, 1/336],

mu_vlc = [1/5, 1],
10 lambda_vm = [1/4000 , 1/2880],

mu_vm = [1, 5],
12 mu_in = [1/0.019166 , 1/0.1],

mttf_hw = [8760, 10000],
14 mttr_hw = [100/60 , 400/60],

mttf_os = [2895, 4000],
16 mttr_os = [1, 5],

mttf_kvm = [2990],
18 mttr_kvm = [1, 5],

mttf_nc = [788.4, 2000],
20 mttr_nc = [1, 5],

mttf_clc = [788.4, 2000],
22 mttr_clc = [1, 5],

mttf_cc = [2788.4 , 4000],
24 mttr_cc = [1, 5],

mttf_walrus = [2788.4 , 4000],
26 mttr_walrus = [1, 5],

mttf_volume = [100000],
28 mttr_volume = [1, 5]

)
30);

}

Listing 4 Performing sensitivity analysis with the design of experiments technique

2.3 Recipe #3 - Reliability block diagram with variable
number of blocks

The MSL language provides a construct to define a RBD model with a
variable number of blocks into a series or parallel arrangement. It may be
useful to answer questions like “How much the system’s availability will be
improved if we add one more redundant block? ”. In this recipe, we will use the
model of an Eucalyptus private cloud with a variable number of worker nodes.
Figure 8 shows the top level model. The cloud is composed by a frontend node
running the management services of the cloud, and by a set of worker nodes.

12 Danilo Oliveira

The models for the frontend and node were shown on previous section, in
figures 2 and 3.

Lines 53 to 59 of Listing 2.3 shows an example of this construct. Using this
construct, we can define a series/parallel arrangement with a variable number
of similar blocks. After the block id (“nodes”), we pass the parameters of the
grouping inside parentheses. The “times” parameter defines the number of
blocks of the series/parallel arrangement. This value must have an initial
value. If it uses a variable, the variable value must be previously inside the
model (using the set keyword), or in the script preamble. For specifying the
block that will be repeated, he have two notations. We can set the “mttf ”
and “mttr ” parameters 2, or we can set the “hierarchyBlock ” parameter, for
hierarchical blocks. Figure 9 shows the output of the script of Listing 2.3.

Fig. 8

1 mttf_hw = 8760;
mttr_hw = 100/60;

3 mttf_os = 2895;
mttr_os = 1;

5 mttf_kvm = 2990;
mttr_kvm = 1;

7 mttf_nc = 788.4;
mttr_nc = 1;

9 mttf_clc = 788.4;

2 Notice that the parameters are in lowercase. This is due the fact that we now are using
the dictionary syntax, therefore we can not use the MTTF and MTTR reserved words as
keys

The Mercury Scripting Language Cookbook 13

mttr_clc = 1;
11 mttf_cc = 2788.4;

mttr_cc = 1;
13 mttf_walrus = 2788.4;

mttr_walrus = 1;
15

mttf_volume = 100000;
17 mttr_volume = 1;

19 n_nodes = 1;

21 RBD NRFrontend{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

23 block os(MTTF = mttf_os , MTTR = mttr_os);
block cc(MTTF = mttf_cc , MTTR = mttr_cc);

25 block clc(MTTF = mttf_clc , MTTR = mttr_clc);
block walrus(MTTF = mttf_walrus , MTTR = mttr_walrus);

27

series s1(hw, os, clc , cc , walrus);
29

top s1;
31

metric rel = reliability(time = t);
33 }

35 RBD Node{
block hw(MTTF = mttf_hw , MTTR = mttr_hw);

37 block os(MTTF = mttf_os , MTTR = mttr_os);
block kvm(MTTF = mttf_kvm , MTTR = mttr_kvm);

39 block nc(MTTF = mttf_nc , MTTR = mttr_nc);

41 series s1(hw, os, kvm , nc);

43 top s1;

45 metric rel = reliability(time = t);
}

47

RBD CloudModel{
49 hierarchy frontend(

reliability=solve(NRFrontend , rel)
51);

53 parallel nodes(
times = n_nodes ,

55 hierarchyBlock = (
reliability= solve(model = Node , metric = rel)

57)
);

59

series s1(frontend , nodes);
61

top s1;
63

14 Danilo Oliveira

metric rel = reliability(time = t);
65 }

67 main{
t = 100;

69

for n_nodes in [1, 2, 3, 4, 5, 6, 7, 8] {
71 r = solve_rm(CloudModel , rel);

println("Number of worker nodes: " .. n_nodes .. ",
reliability: " .. r);

73 }
}

Fig. 9 Output of the script of Listing 2.3

2.4 Recipe #4 - Energy Flow model + availability model

The Energy Flow Model [7] formalism is used to represent the energy flow
between the system components considering the respective efficiency and the
maximum energy that each component can provide (considering electrical
devices) or extract (assuming cooling devices). The system under evaluation
can be correctly arranged, in the sense that the required components are
properly connected, but they may not be able to meet system demand for
electrical energy or thermal load.

Some metrics of an EFM model takes an availability parameter, that must
inform the steady state availability of the datacenter being evaluated. This
value must be computed by a separated availability model of the datacenter.
Thanks to the hierarchical modeling capabilities of the scripting language, it
is possible to link the EFM model and the availability model. This feature
turns possible to see how the availability model parameters impact the EFM
metric.

The Mercury Scripting Language Cookbook 15

In this recipe, we will use as example the EFM model represented in Figure
10. Figure 11 shows the corresponding availability model. Listing 5 shows a
script that implements these two models. In the line 48 of the script we
declare a “operationalExergy” metric, that takes two parameters: time and
availability. The availability parameter is obtained by the RBD model named
AvailModel, using the solve function.

Fig. 10 EFM model

Fig. 11 Availability model of the EFM of Figure 10

RBD AvailModel{
2 block crac(MTTF = mttf_crac , MTTR = mttr_crac);

block chiller(MTTF = mttf_chiller , MTTR = mttr_chiller);
4 block c_tower(MTTF = mttf_ctower , MTTR = mttr_ctower);

6 series s1 (crac , chiller , c_tower);

8 top s1;

10 metric aval = availability;
}

12

14 EFM EFM1{
component source(

16 type = "Source",
parameters = (

18 demandedEnergy = 10
)

20);

22 component target(
type = "Target",

24 parameters = (

16 Danilo Oliveira

demandedEnergy = 10
26)

);
28 component crac(

type = "CRAC",
30 parameters = (

efficiency = e,
32 retailPrice = r

)
34);

component chiller(
36 type = "Chiller"

);
38 component tower(

type = "C_Tower"
40);

42 arc source -> crac;
arc crac -> chiller;

44 arc chiller -> tower;
arc tower -> target;

46

48 metric m = operationalExergy(time = 1000, availability =
solve(AvailModel , aval));

}
50

52 main {
mttf_crac = 1000;

54 mttr_crac = 1;
mttf_chiller = 6000;

56 mttr_chiller = 10;
mttf_ctower = 10000;

58 mttr_ctower = 20;

60 m = solve(EFM1 , m);
println("Operational exergy: " .. m);

62 }

Listing 5 Script for a EFM model

2.5 Recipe #5 - Using phase type distributions in a
Stochastic Petri Net Model

When modelling a certain system of the real world using Stochastic Petri
Nets, there are two options for evaluating the metrics: stationary/transient
analysis and simulation. Stationary/transient analysis provides more accu-
rate results, but the drawback is that the delay associated with the transi-

The Mercury Scripting Language Cookbook 17

tions must be exponentially distributed. If an user collects real world data to
parametrize his/her model, and the histogram indicates that the data is not
even close to an exponential distribution, the assumption of an exponentially
distributed delay makes the model deviates from the real system.

Consider, for instance, that the service time from the SPN from Figure 12
is measured from the real system, and the user obtained the data depicted
in the histogram of Figure 13. As we can observe, the histogram curve is
different from a exponential distribution. If the user assumes an exponential
service time from these data, he/she can obtain different results from the real
system.

generated

loss

generate enter queue service

free

K

Fig. 12 Stochastic Petri Net model for a M/M/1/k queue [8]

Value

Fr
e
q
u
e
n
cy

Fig. 13 Histogram plot from collected data

A existent solution to overcome this problem is to use phase-type distri-
butions [9]. A phase-type distribution can be expressed as a composition of
exponential distributions. A important characteristic of this class of prob-
ability distributions is that they can be used to approximate an empirical
distribution [10].

A tradeoff found in using phase-type distributions to approximate the
time of firing of transitions is that the model can become more complex and
difficult to understand. To simplify the use of this class of distributions in SPN

18 Danilo Oliveira

models, the MSL language defines a special syntax for expressing another
distribution types than the exponential distribution. When the evaluation
engine for the scripting language detects a phase-type distribution delay, it
generates the structure for the phase-type transition as a subnet, and inserts
this subnet on the actual Petri net by using the hierarchical transitions of
the engine. As consequence, the model will be simpler than if the structure
of the phase-type transition was mixed with the Petri net structure. In the
graphical representation on the Mercury interface, exponential transitions
are displayed with a white background, and non-exponential transitions are
displayed with a shadowed background.

Figure 14 a) shows the SPN model with a transition with delay following an
Erlang distribution. This transition is represented with a shaded background.
Without this feature, our model should be depicted as in Figure 14 b), with
the inclusion of additional places, arcs and transitions (displayed inside the
dotted box) the shaded transition of the previous model.

generated

loss

generate enter queue service

free

K

(a)

generated

loss

generate enter queue

free

T1 P2 delay P3 T2

K K

(b)

Fig. 14 Stochastic Petri Net model with a Erlang transition

In the Listing 6, we show the code for the SPN model of Figure 14 a).
The service transition is configured with a phase-type delay determined by
a Erlang distribution. Instead of giving a numeric value for defining a simple
timed transition, we have to pass the distribution type and its parameters. In
this example, we use the “Erlang” string value to specify a Erlang distribution.
This distribution have two parameters: shape - the number of phases, and
meanDelay - the exponential delay of one phase.
k = 5;

2 arrivalTime = 1.5;
serviceTime = 0.1;

The Mercury Scripting Language Cookbook 19

4 phases = 6;

6 SPN Model{

8 place buffer(tokens = k);
place generated;

10 place queue;

12

immediateTransition drop(
14 inputs = [generated],

inhibitors = [buffer]
16);

18 immediateTransition enter(
inputs = [generated , buffer],

20 outputs = [queue]
);

22

timedTransition generate(
24 outputs = [generated],

delay = arrivalTime
26);

28 timedTransition service(
inputs = [queue],

30 outputs = [buffer],
delay = (

32 type="Erlang",
parameters = (

34 meanDelay=serviceTime ,
shape=phases

36)
)

38);

40 // The expected number of tokens in the "queue" place
metric equeue = stationaryAnalysis(expression = "E{#queue}");

42

}
44

main {
46 e = solve(Model , equeue);

println(e);
48 }

Listing 6 Timed transition with phase-type delay

20 Danilo Oliveira

2.6 Recipe #6 - Sensitivity analysis on a performability
model

In some performability studies, we are interested on finding how much the
performance of a system is affected due the presence of failures. Thanks to the
powerful solve function, we can link a dependability to a performance model,
and measure how changing the dependability model parameters impacts the
performance measures. Figure 15 shows an example of performability model.
The performance model is a SPN model that represents a M/M/1/K queue.
We put a place of server_up/server_down places that indicates the opera-
tional status of the server. If the server is down, the server is not able to pro-
cess a request, as indicated by the inhibitor arc. The delay of the fail/repair
transitions is computed by a separated RBD model. This RBD model is
composed by three blocks: hardware, operating system and application. The
MTTF and MTTR metrics of this model are used as delay for the fail/repair
transitions on the SPN model.

generated

loss

generate enter queue service

bu er

server_down

server_up

repair fail

OSHW APP

K

Fig. 15 Performability model

The script is exhibited on Listing 7. We create a RBD model named De-
pendModel, that declares two metrics: the MTTF and the MTTR. The value
of those metrics are used as input for the performance model, as shown in lines
62 and 66. On the SPN model, we declares two metrics: m1, that computes
the stationary probability of all markings that turns the service transition
enabled; tp, a composite metric that computes the throughput of the service
transition. Finally, on the main block, we variate the mttf_hw parameter
over a list, and show how the throughput of the server is affected by this
variation.
arrivalTime = 1.5;

2 serviceTime = 1.2;

The Mercury Scripting Language Cookbook 21

k= 5;
4

mttf_hw = 1000;
6 mttr_hw = 4;

mttf_os = 700;
8 mttr_os = 1;

mttf_app = 500;
10 mttr_app = 0.1;

12 RBD DependModel{
block HW(MTTF = mttf_hw , MTTR = mttr_hw);

14 block OS(MTTF = mttf_os , MTTR = mttr_os);
block APP(MTTF = mttf_app , MTTR = mttr_app);

16

series s1(HW, OS , APP);
18

top s1;
20

metric mttf_ = mttf;
22 metric mttr_ = mttr;

}
24

SPN Model{
26

place buffer(tokens = k);
28 place generated;

place queue;
30

place server_up(tokens = 1);
32 place server_down;

34

immediateTransition drop(
36 inputs = [generated],

inhibitors = [buffer]
38);

40 immediateTransition enter(
inputs = [generated , buffer],

42 outputs = [queue]
);

44

timedTransition generate(
46 outputs = [generated],

delay = arrivalTime
48);

50 timedTransition service(
inhibitors = [server_down],

52 inputs = [queue],
outputs = [buffer],

54 delay = serviceTime
);

56

22 Danilo Oliveira

timedTransition fail(
58 inputs = [server_up],

outputs = [server_down],
60 delay = solve(DependModel , mttf_)

);
62

timedTransition repair(
64 inputs = [server_down],

outputs = [server_up],
66 delay = solve(DependModel , mttr_)

);
68

metric m1 = stationaryAnalysis(expression = "P{(#queue >0) AND(#
server_up =1)}");

70 metric tp(m1 / serviceTime);

72 }

74 main {
for mttf_hw in [1000, 1200, 1300, 1400, 1500] {

76 tp = solve(Model , tp);
println(tp);

78 }
}

Listing 7 Script for a performability model

2.7 Recipe #7 - Executing a script inside a Java
program

Suppose that a programmer wants to create a specific tool that will be
used to model cloud infrastructures. With this tool, an user will be able to
create clusters, specify frontend and worker nodes, and compose them into a
cloud infrastructure. By using the provided high level cloud model, the user
will be able to extract performance and dependability metrics of a cloud. This
can be achieved by converting the high level model into a SPN/RBD/CTMC
model, and solving its metrics. To achieve this goal, the programmer must
be able to create SPN/RBD/CTMC models, and solving it inside his/her
program.

The Mercury tool exports the same API used by the scripting evaluation
runtime. By using the Mercury executable archive (.jar) as a library inside
an external Java program, it is possible to:

• Run scripts, i.e., parsing the script, loading the models in the runtime,
and running the main block;

• Evaluate scripts, i.e., parsing the script, loading the models in the runtime,
but not running the main block;

The Mercury Scripting Language Cookbook 23

• Obtaining reference to models and metrics;
• Modifying parameters;
• Solving metrics.

The scripts can be created “on the fly” and stored into a String variable,
or they can be stored in the disk. The Listing 8 shows a Java program that
performs the above mentioned steps. To compile this class, we must to create
a Java project using any IDE (Eclipse, Netbeans), and add the Mercury as
a library in the dependencies. We supply a single .jar file that contains the
Mercury API and also the Mercury dependencies into a single package, as
shown in Figure 16.

Fig. 16 Netbeans project with the Mercury API as library

In the Listing 8, we evaluate a script located in the file named “efm_model.mry”,
that must be in the same path of the program, or inside the root of the Net-
beans/Eclipse project folder. The Script class has two constructors:

• public Script(java.io.File file);
• public Script(String script);

The first constructor is used to evaluate a script located inside a file, and
the second is used to evaluate a script that is stored into a java.lang.String
object. For evaluating this script, we call the “evaluateScript” method of the
runtime object. This method sets the variables defined in the preamble (if
this section exists), loads all models in the runtime, but does not execute the
main block. If we want to run the main block after loading the models, we
call the “runScript” method.

1 package org.modcs.example;

3 import java.io.File;
import org.modcs.tools.parser.model.ExecutionRuntime;

5 import org.modcs.tools.parser.model.Model;
import org.modcs.tools.parser.model.Script;

7 import org.modcs.tools.parser.model.metrics.Metric;

9

24 Danilo Oliveira

public class EFMExample {
11 public static void main(String [] args) {

13 // creating the scripting evaluatin runtime
ExecutionRuntime runtime = new ExecutionRuntime ();

15

// creating an evaluating the script , without
17 // running the main block

Script scrpt = new Script(new File("emf_model.mry"));
19 runtime.evaluateScript(scrpt);

21

// modifying some variables and changing the model
23 // parameters

runtime.getVariableTable ().setValue("mttf", 1000);
25 runtime.getVariableTable ().setValue("mttr", 1);

runtime.getVariableTable ().setValue("e", 0.8);
27 runtime.getVariableTable ().setValue("r", 5000);

29 // obtaining reference to a model by passing
//its identifier

31 Model model = runtime.getModel("EFM1");

33 // obtaining reference to a metric
Metric m = model.getMetric("m2");

35

// solving and printing the metric
37 double val = m.solve();

System.out.println("Metric value: " + val);
39

41 // performing a experiment
double [] mttfs = { 500, 1000, 1500, 2000, 2500 };

43

for(double mttf: mttfs){
45 runtime.getVariableTable ().setValue("mttf", mttf);

47 System.out.println(m.solve());
}

49 }
}

Listing 8 Executing a script inside a Java program

References

1. B. Silva, R. Matos, G. Callou, J. Figueiredo, D. Oliveira, J. Ferreira, J. Dantas, A. L.
Junior, V. Alves, and P. Maciel, “Mercury: An integrated environment for performance
and dependability evaluation of general systems,” Proceedings of Industrial Track at
45th Dependable Systems and Networks Conference (DSN), 2015.

The Mercury Scripting Language Cookbook 25

2. J. Dantas, R. Matos, J. Araujo, and P. Maciel, “Eucalyptus-based private clouds:
availability modeling and comparison to the cost of a public cloud,” Computing, pp.
1–20, 2015.

3. R. Matos, J. Araujo, D. Oliveira, P. Maciel, and K. Trivedi, “Sensitivity analysis of
a hierarchical model of mobile cloud computing,” Simulation Modelling Practice and
Theory, vol. 50, no. 0, pp. 151 – 164, 2015, special Issue on Resource Management in
Mobile Clouds.

4. R. M. De Melo, M. C. Bezerra, J. Dantas, R. Matos, I. J. De Melo Filho, and P. Ma-
ciel, “Redundant vod streaming service in a private cloud: Availability modeling and
sensitivity analysis,” Mathematical Problems in Engineering, vol. 2014, 2014.

5. F. Hoffman and R. Gardner, “Evaluation of uncertainties in environmental radiological
assessment models,” in Radiological Assessments: a Textbook on Environmental Dose
Assessment, J. Till and H. Meyer, Eds. Washington, DC: U.S. Nuclear Regulatory
Commission, 1983, Report No. NUREG/CR-3332.

6. R. Jain, The art of computer systems performance analysis. John Wiley & Sons,
2008.

7. G. Callou, P. Maciel, D. Tutsch, J. Ferreira, J. Araújo, and R. Souza, “Estimating
sustainability impact of high dependable data centers: A comparative study between
brazilian and us energy mixes,” Computing, vol. 95, no. 12, pp. 1137–1170, 2013.

8. R. German, “A concept for the modular description of stochastic petri nets (extended
abstract,” in Proc. 3rd Int. Workshop on Performability Modeling of Computer and
Communication Systems, 1996, pp. 20–24.

9. L. Breuer and D. Baum, “Phase-type distributions,” An Introduction to Queueing
Theory and Matrix-Analytic Methods, pp. 169–184, 2005.

10. H.-B. Mor, “Performance modeling and design of computer systems,” 2013.

	Overview
	How to Install the Tool
	Linux System Requirements
	Increasing JVM Memory Allocation

	Graphical User Interface (GUI)
	RBD View
	FT View
	EFM View
	SPN View
	CTMC View
	DTMC View
	ET View

	Main Menu
	Main Toolbar
	Drawing Area

	SPN Modeling and Evaluation
	SPN Simulation
	Stationary Simulation
	Transient Simulation
	MTTA Simulation

	SPN Analysis
	Stationary Analysis
	Transient Analysis

	SPN Structural Analysis
	Token Game
	Sensitivity Analysis

	RBD Modeling and Evaluation
	RBD Reduction
	RBD Evaluation
	Evaluation
	RBD Experiment
	Bounds for Dependability Analysis
	Component Importance and Total Cost of Acquisition
	Structural and Logical Functions
	Sensitivity Analysis

	FT Modeling and Evaluation
	FT Evaluation
	Evaluation
	FT Experiment
	Bounds for Dependability Analisys
	Component Importance and Total Cost of Acquisition
	Structural and Logical Functions
	Sensitivity Analysis
	Export to RBD model

	CTMC Modeling and Evaluation
	Input Parameters/Definitions
	Metrics
	CTMC Evaluation
	CTMC Stationary Analysis
	CTMC Transient Analysis
	Sensitivity Analysis

	DTMC Modeling and Evaluation
	Input Parameters
	Metrics
	DTMC Evaluation
	DTMC Stationary Analysis
	DTMC Transient Analysis
	Sensitivity Analysis

	ET Modeling and Evaluation
	ET Evaluation
	ET Experiment

	EFM Modeling and Evaluation
	Power Load Distribution Algorithm - PLDA
	Example of PLDA execution

	Power Load Distribution Algorithm in Depth search (PLDA-D)
	Example of PLDA-D Execution

	Comments
	Editing a comment
	Highlighting with comments
	Hiding comments
	Disabling comments selection

	Mercury Scripting Language
	Introduction
	Script Structure
	Reserved Words

	Continuous Time Markov Chain
	Availability
	Reward Metric
	Stationary and Transient Probabilities

	Reliability Block Diagram
	Stochastic Petri Nets
	Event Tree

	Syntax of CTMC Measures, Parameters, State Names, and State Rewards
	Syntax of SPN Metrics, Guard Expressions, and Arc Multiplicity Dependent on Marking.
	GENERAL COMMENTS ABOUT SPN SYNTAX

	EMA Tool.
	Mercury Scripting Language Cookbook

