
Eliomar Gomes Campos

PERFORMANCE EVALUATION OF AUTO SCALING MECHANISMS

IN PRIVATE CLOUDS FOR SUPPORTING A WEB SERVICE

APPLICATION

M.Sc. Dissertation

Federal University of Pernambuco
posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE
2015

www.cin.ufpe.br/~posgraduacao

Eliomar Gomes Campos

PERFORMANCE EVALUATION OF AUTO SCALING MECHANISMS
IN PRIVATE CLOUDS FOR SUPPORTING A WEB SERVICE

APPLICATION

A M.Sc. Dissertation presented to the Center for Informatics

of Federal University of Pernambuco in partial fulfillment

of the requirements for the degree of Master of Science in

Computer Science.

Advisor: Paulo Romero Martins Maciel

Co-Advisor: Rubens de Souza Matos Júnior

RECIFE
2015

Catalogação na fonte

Bibliotecário Jefferson Luiz Alves Nazareno CRB4-1758

C198p Campos, Eliomar Gomes.

Performance evaluation of auto scaling mechanisms in private clouds for
supporting a web service application / Eliomar Gomes Campos. – Recife: O
Autor, 2015.

 97 f.: fig., tab.

 Orientador: Paulo Romero Martins Maciel.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIN,

Ciência da Computação, 2015.
 Inclui referências e apêndices.

1. Avaliação de desempenho (Computadores). 2. Computação em
nuvem. 3. Web services. I. Maciel, Paulo Romero Martins.
(Orientador). II. Titulo.

 004 CDD (22. ed.) UFPE-MEI 2015-126

Dissertação de mestrado apresentada por Eliomar Gomes Campos ao programa de Pós-Graduação
em Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco,
sob o título Performance evaluation of auto scaling mechanisms in private clouds for sup-
porting a web service application, orientada pelo Prof. Paulo Romero Martins Maciel e
aprovada pela banca examinadora formada pelos professores:

———————————————————————–
Prof. Kelvin Lopes Dias

Centro de Informática/UFPE

———————————————————————–
Profa. Erica Teixeira Gomes de Sousa

Departamento de Estatística e Informática / UFRPE

———————————————————————–
Prof. Paulo Romero Martins Maciel

Centro de Informática/UFPE

RECIFE
2015

eliomar
Typewriter
Visto e permitida a impressão.Recife, 3 de agosto de 2015.___Profa. Edna Natividade da Silva BarrosCoordenadora da Pós-Graduação em Ciência da Computação do Centro de Informática da Universidade Federal de Pernambuco

eliomar
Typewriter

eliomar
Typewriter

I dedicate this dissertation to the great Creator of the

universe.

Acknowledgements

Is at this moment I stop in time, and I remember the struggles I faced in my professional
journey. So I try to search in the memory the countless times with people who helped me to
come here.

I understand how much I ought to be grateful to the Creator of the universe, to the
Creator of the love. The only to whom I owe all honor, glory and praise. He always comforted
my heart, and maintained me steady when I thought about giving up, he made me understand
that I was not alone.

I thank of ineffable way to my family, that in the first periods of my life expressed the
following phrase: "This boy will be the future of the family". This phrase believe to be the largest
contributor for my victories. My father Eleomar Campos, my mother Maria das Graças, my
grandparents Floriano Lopes (in memoriam) and Elza Campos, my sister Mayara Campos.
They deserve much more than I the honors of this work. To this crazy, united, and beautiful
family, I give my eternal and inexorable love.

I direct my gratitude to whom absorbed my moments of defeats and victories, sorrows
and joys. Rafaela Wanderley, his company and love, it is essential to my happiness.

I am very grateful to all the teachers who have gone through all of my educational
background, and at this, especially to my advisor Paulo Maciel, if it was not the constant and
patient support in my doubts, maybe I had not achieved this victory.

I could not fail to thank those who are part the MoDCS Research Group. Especially for
Rubens Matos, by the spirit of unity, knowledge sharing, and friendship. Certainly, the merits
of this work are also of yours.

I would like to thank the Foundation for Support to Science and Technology of Pernam-
buco (FACEPE) for their financial support.

I have fought the good fight, I have finished the course, I have kept the faith:

henceforth there is laid up for me the crown of righteousness, which the Lord,

the righteous judge, shall give to me at that day; and not to me only, but also

to all them that have loved his appearing.

—2 TIMOTHY 4:7-8

Resumo

Serviços web compostos, também conhecidos como mashups, são úteis para construir
produtos de valor agregado na web. Ambientes de computação em nuvem têm sido amplamente
utilizados para hospedar serviços web, devido à possibilidade de aumentar ou diminuir os recursos
disponíveis através de mecanismos automáticos (i.e.: escala automática). Tal comportamento
elástico facilita a tarefa de alcançar um desempenho satisfatório nos picos de demanda sem
desperdiçar recursos. É difícil determinar os componentes certos para ajustar o desempenho
desses sistemas eventualmente, quando necessário. Este estudo avalia o desempenho dos
mecanismos de escala automática e elasticidade para nuvens privadas hospedando um serviço
web de recomendação de eventos. Uma abordagem de modelagem hierárquica é utilizada
afim de lidar com a complexidade de tal sistema, e representar detalhes específicos desses
mecanismos. Nosso estudo aplicou análise de sensibilidade paramétrica a partir de várias
métricas de desempenho dos modelos, tais como o tempo médio de execução do monitoramento
de escala automática, tempo médio da instanciação de VMs e o tempo médio da resposta
percebida pelo usuário do serviço web. Realizamos também um Experimento Geral Fatorial
Completo, com o objetivo de calcular os efeitos e relevâncias de cada fator envolvido nos
processos escala automática e instanciação de máquinas virtuais (virtual machines - VMs). Para
o monitoramento de escala automática, analisamos os fatores: período de coleta de uma métrica,
número de máquinas virtuais monitoradas, e o tempo de monitoração de uma métrica. Quanto
ao processo de instanciação, os seguintes fatores foram escolhidos: tipo de VM, tamanho da
imagem da VM, e cache da VM. Estas análises permitem verificar o impacto dos parâmetros
sobre o tempo de resposta do sistema e apontar formas eficazes de melhoria do desempenho.

Palavras-chave: Computação em Nuvem. Nuvem Privada. Escala Automática. Avaliação de
Desempenho. Modelagem Analítica.

Abstract

Composite web services, also known as mashups, are useful to build added-value products
in the web. Cloud computing environments have been widely used for hosting web services due
to the possibility of increasing or decreasing available resources through automatic mechanisms
(i.e.: auto scaling). Such elastic behavior ease the task of reaching satisfactory performance on
peaks of demand without wasting resources. It is hard to determine the right components to
tune such systems performance when eventually needed. This study evaluates the performance
of auto scaling mechanisms for private clouds hosting an event recommendation web service.
A hierarchical modeling approach is used to cope with the complexity of such a system, and
represent specific details of these mechanisms. Our study applies parametric sensitivity analysis
from several performance metrics of the models, such as mean execution time of the auto scaling
monitoring, mean time of VMs instantiation, and the mean response time perceived by the web
service user. We also have carried a General Full Factorial Experiment, in order to calculate
the relevance and effects of each factor involved in the processes of auto scaling and virtual
machines (VMs) instantiation. For the auto scaling monitoring, we analyze the factors: collection
period of a metric, number of monitored virtual machines, and the time of monitoring of a metric.
Regarding the instantiation process, the following factors have been chosen: VM type, VM
image size, and VM caching. This analysis allows checking the impact of parameters on the
system response time and pointing out effective ways for improvement of performance.

Keywords: Cloud Computing. Private Cloud. Auto Scaling. Performance Evaluation. Analyti-
cal Modeling.

List of Figures

2.1 Computing paradigm shift over six distinct stages. 24
2.2 Relationship between the service models . 26
2.3 Example of a CTMC model . 29
2.4 Example of a SPN model . 30

3.1 Conceptual representation of Eucalyptus architecture 34
3.2 Event recommendation mashup architecture 36
3.3 Scalable Web service architecture . 37
3.4 Detailed representation of the auto scaling process architectures 38

4.1 Methodology for performance evaluation of auto scaling in a private cloud . . . 42
4.2 SPN model for the scalable web service on private cloud 44
4.3 CTMC submodel for the event recommendation mashup 46
4.4 Generic submodel for performance evaluation of VM instantiation 48
4.5 CTMC refined submodel with a hypoexponential distribution of 4 phases in DI

state . 48
4.6 Generic model for the auto scaling performance 49
4.7 Refined CTMC models by polyexponential distributions 50

5.1 Activity diagram of the experimental evaluation 52
5.2 Overview of the experimental design for auto scaling monitoring 54
5.3 Components of the auto scaling monitoring environment 55
5.4 Workload cycle illustration of the auto scaling monitoring. 56
5.5 Main plot and interactions plot for factors effects 60
5.6 Overview of the experimental design for instantiation process. 64
5.7 Components of the VM instantiation environment 65
5.8 Workload cycle illustration of the VM instantiation process 66
5.9 Charts for statistical significance of effects for main factors and interactions . . 71
5.10 Charts for main and interactions effects of factors 72
5.11 Impact of mrtES, mrtSA, and mrtSS on system response time 76
5.12 Impact of TLB, TSend, and TRep on system response time 76
5.13 Impact of pCache on system response time 77
5.14 Sensitivity analysis of instantiation time with respect to pCache 79
5.15 Graphs of absorption probabilities of the auto scaling process. 81
5.16 Sensitivity analysis of auto scaling process with respect to parameters tAS, tRI,

tCI, tDI, and tPV . 83

List of Tables

1.1 Relationship between the proposals of this dissertation and related works 21

4.1 Immediate transitions of the SPN model for scalable web service on private cloud 45

5.1 Relevant factors and parameters . 52
5.2 Scenarios of the auto scaling monitoring experiment 53
5.3 Results of Each Scenario the auto scaling monitoring 58
5.4 Effects and estimated relevance to the average total time for auto scaling monitoring 59
5.5 Factors and levels of the VM instantiation . 62
5.6 Types of VM instances chosen . 63
5.7 Scenarios of the instantiation experiment . 64
5.8 Results of each scenario of the experiment . 69
5.9 Estimated effects and relevances for the total time of instantiation 70
5.10 Timed transitions of the SPN model for scalable web service on private cloud . 74
5.11 Parameter values for the mashup CTMC model 74
5.12 Performance measures . 75
5.13 Parameter values for the CTMC submodel of VM instantiation 78
5.14 Parameter values for the CTMC model of auto scaling process 80

List of Acronyms

SLAs Service Level Agreements . 15

SPN Stochastic Petri Net . 16

CTMC Continuous Time Markov Chain . 16

QoS Quality of Service . 16

DTMC Discrete Time Markov Chain . 18

DoE Design of Experiments . 21

IT Information Technology . 23

NIST National Institute of Standards and Technology . 23

IaaS Infrastructure as a Service . 26

PaaS Platform as a Service . 26

SaaS Software as a Service . 26

CRM Customer Relationship Management . 26

ERP Enterprise Resource Planning . 26

API Application Programming Interface . 27

PN Petri Nets . 29

AWS Amazon Web Services . 33

CLC Cloud Controller . 33

EMI Eucalyptus Machine Image. .34

EKI Eucalyptus Kernel Image . 34

ERI Eucalyptus Ramdisk Image . 34

S3 Amazon Simple Storage Service . 34

CC Cluster Controller . 34

NC Node Controller .34

SC Storage Controller .34

EBS Eucalyptus Block Store . 34

ELB Elastic Load Balancing . 34

GPS Global Positioning System . 35

DSPN Deterministic and Stochastic Petri Net .45

STA Stochastic Timed Automaton . 47

ANOVA Analysis of Variance . 59

MTTA Mean Time to Absorption . 78

Contents

1 Introduction 15
1.1 Motivation and Justification . 16
1.2 Objectives . 17
1.3 Related works . 18
1.4 Structure of the dissertation . 22

2 Background 23
2.1 Cloud Computing . 23

2.1.1 Essential Characteristics . 25
2.1.2 Service Models . 25
2.1.3 Deployment Models . 27

2.2 Performance Evaluation of Systems . 27
2.2.1 Measurement . 28
2.2.2 Continuous Time Markov Chains . 28
2.2.3 Stochastic Petri Nets . 29
2.2.4 Parametric Sensitivity Analysis . 30

3 Auto-Scalable Private Cloud Environment 33
3.1 Eucalyptus Private Cloud . 33
3.2 Scalable Composite Web Service Architectures 35

4 Methodology and Models 41
4.1 Methodology . 41
4.2 SPN Main Model for Scalable Composite Web Service 43
4.3 CTMC Submodel for Mashup Application . 45
4.4 CTMC Submodel for VM Instantiation . 47
4.5 CTMC Model for Auto Scaling Process . 48

5 Case Studies 51
5.1 Case Study One . 51

5.1.1 Design of Experiments (DoE) for Auto Scaling Monitoring 52
5.1.2 DoE for VM Instantiation Process . 61

5.2 Case Study Two . 73
5.3 Case Study Three . 77
5.4 Case Study Four . 79

14

6 Conclusion 84
6.1 Statement of the Contributions . 85
6.2 Future Works . 86

References 88

Appendix 93

A Script to Measure Auto Scaling Monitoring Time 94

B Script to Measure VM Instantiation Time 96

151515

1
Introduction

Cloud computing provides on-demand access to shared computing resources and services,
such as: network infrastructure, storage, operating systems, and applications. Such resources and
mechanisms can be easily acquired and released with minimal management effort (NIST, 2013).
These features enable administrators to focus only on the business model, without worrying
about infrastructure details (NIST, 2013; SOUSA et al., 2012). The experience in acquiring
cloud services is often compared to the consumption of public utilities, such as electricity, so the
user just pay for that service without worrying or knowing about the infrastructure that provides
it (BAUER; ADAMS, 2012).

Despite the benefits of acquiring services from third-party providers, some companies
prefer investing on privately managed infrastructures, known as private clouds, to get the
advantages of flexible and efficient usage of physical resources while keeping the control over the
data. Such a solution also allows a smoother transition to the cloud paradigm before a complete
migration to a third-party service (i.e., public cloud), as well as to setup a hybrid cloud, where
both infrastructures – private and public – are simultaneously used (EUCALYPTUS, 2013a).

Auto scaling and elastic load balancing are important mechanisms that enable flexible
allocation of resources in cloud computing and enforce the fulfillment of Service Level Agree-
ments (SLAs) in environments with highly varying workloads (CARON et al., 2012; GUSEV
et al., 2013). Applications running on cloud environments, and using auto scaling and load
balancing features, are designed to instantiate or terminate virtual machine (VM) instances
according to the current workload level. Such a behavior avoids the waste of idle resources (e.g.:
memory, CPU, disk space, power) in periods of low load, whereas enables the fast increase of
computational power when facing a burst of high load (CARON et al., 2012; EUCALYPTUS,
2013b).

This study evaluates the performance of auto scaling mechanisms for private clouds
hosting a web service application that must deal with changes on workload intensity. The
evaluation uses an experimental approach combined with analytical modeling. The main focus
is on measures such as the response time of the web service and the time for completion of
auto scaling activities. A hierarchical modeling approach is used to cope with the complexity of

1.1. MOTIVATION AND JUSTIFICATION 16

such a system and represent details of specific processes, such as the auto scaling monitoring,
instantiation of VMs, and the calls for the providers of specific web services that compose the
mashup application. The hierarchical model comprises a Stochastic Petri Net (SPN) (MOLLOY,
1982; MARSAN; CONTE; BALBO, 1984) as main model and Continuous Time Markov
Chain (CTMC) (KLEINROCK, 1975; BOLCH et al., 2001) as submodels.

This study applied a General Full Factorial Design of Experiments (GUIMARÃES;
MACIEL; MATIAS JR, 2013; MONTGOMERY, 2012; JAIN, 2008) for analyzing two specific
processes of the private cloud system, namely the auto scaling monitoring and instantiation of
VMs. The experiments evaluated the impact of three factors on the total time for triggering auto
scaling actions: the period taken to collect metrics, the number of monitored VMs, and window
time for monitoring the metric compliance to a given threshold. The efficient instantiation of
VMs is one requirement for the elastic behavior of cloud-based applications. Therefore, this
study also characterizes how factors such as VM type, VM image size, and VM caching impact
the total time spent for creating one VM instance in the private cloud.

1.1 Motivation and Justification

Applications that combine data from distinct web services, known as mashup services,
are a current trend for building added-value products in the web (MA et al., 2013; LEITNER;
HUMMER; DUSTDAR, 2011; LI; FANG; XIONG, 2008). These applications might have
complex application logic, i.e.: dependency among components and various points of parallelism,
so it is non-trivial to check whether or not the composed service will meet the Quality of
Service (QoS) characteristics that users may expect. In this context, analytical approaches to
determine the overall performance and reliability of composite web services have been proposed
in the literature (MATOS; MACIEL; SILVA, 2013; REN et al., 2009; ZHONG; QI; XU, 2008;
SATO; TRIVEDI, 2007).

Furthermore, many web service administrators face the challenge of dynamically adapting
to workload fluctuations which sometimes require more or less infrastructure resources such
as storage, processing, memory, and bandwidth. Banking, social networking, e-commerce,
and access to online games, are examples of applications that might receive sudden surges in
traffic, and thus, compromise performance of service. The inability to deal with workload peaks
might also cause service interruption in some cases, resulting in customer dissatisfaction, and
financial damage. On the other hand, very low traffic may underuse resources. It is complex to
predict the exact moment that these sudden events happen and reallocate resources efficiently
(EUCALYPTUS, 2014a; SULEIMAN; VENUGOPAL, 2013; YANG et al., 2013).

In order to overcome these challenges, cloud computing environments allow increas-
ing or decreasing available resources manually or through automatic mechanisms (i.e.: auto
scaling), by adopting the elasticity concept. This elasticity, or scalability, is mainly due to the
virtualization technologies, that allow optimizing the usage of physical resources and reducing

1.2. OBJECTIVES 17

energy consumption, by allocating more services in less computers than seen in non-virtualized
environments (EUCALYPTUS, 2014b; SULEIMAN; VENUGOPAL, 2013).

Private cloud platforms depend on the auto scaling mechanism to make more efficient
usage of available resources, and allow adaptation of web services execution to fluctuating
workload. In other words, the promptness to dynamically adapt to sudden workload peaks
depends on the total time of the auto scaling process, comprising the interval between detecting
the necessity for better performance, and subsequently implementing a policy that resizes the
number of VM instances.

In order to take the most benefits from these mechanisms, some relevant factors must
be properly configured in the cloud platform. Otherwise, the performance may be strongly
affected (EUCALYPTUS, 2014a). A plethora of related research studies overlook some cloud
configuration factors that have direct impact on auto scaling performance.

Therefore, it is important to evaluate the performance of a web service application
running on a private cloud with elasticity mechanisms, and through the combination of statistical
techniques, identify the impact of some configuration and workload factors. The evaluation
approach and results from this study can help system administrators to properly configure the auto
scaling mechanism in private clouds frameworks. Such results can also aid in the development
of techniques or algorithms to improve performance of auto scaling functions in private clouds
frameworks.

1.2 Objectives

This section describes the general and specific objectives of this research. The major
objective of this work is to evaluate the performance of auto scaling mechanisms for private
clouds hosting an event recommendation web service. There are some specific objectives,
described as follows:

� To propose a methodology for evaluation of the auto scaling mechanisms of a private
cloud;

� To investigate the effects of private cloud configuration factors on the performance of
the auto scaling mechanism;

� To characterize the times spent in each specific activity of the auto scaling triggering
and VM instantiation processes;

� To develop an analytical model for predicting the response time of a web service
hosted in a scalable private cloud.

1.3. RELATED WORKS 18

1.3 Related works

Other authors have proposed mechanisms for QoS prediction of composite web ser-
vices through analytical models without considering the employment of auto scaling or cloud
computing. In (SILVA et al., 2006) and (ZHONG; QI; XU, 2008), the prediction of metrics
for composite services using SPNs is studied, considering performance and reliability aspects,
respectively. In (REN et al., 2009), Discrete Time Markov Chain (DTMC) are used for relia-
bility computation, while CTMCs are used in (SATO; TRIVEDI, 2007) to find reliability and
performance bottlenecks of a travel agent composite web service through sensitivity analysis.
Closed-form expressions are also used in (SATO; TRIVEDI, 2007) for computing the response
time and reliability of the composite web service. The work presented in (MATOS; MACIEL;
SILVA, 2013) integrates an optimization framework to analytical models for the prediction of
QoS metrics of fixed web services compositions. Our dissertation also uses stochastic models for
performance prediction of composite web services. But, our approach differs from the mentioned
papers (SILVA et al., 2006; ZHONG; QI; XU, 2008; REN et al., 2009; SATO; TRIVEDI, 2007;
MATOS; MACIEL; SILVA, 2013) by assessing the auto scaling mechanism in private clouds.

Performance evaluation of cloud computing systems has been a topic of many recent
works. There have been some efforts to propose auto scaling mechanisms or evaluate them
in distinct systems, usually with single (non-composite) web services or similar applications.
Several studies evaluated the performance of services in an environment using auto scaling
(SULEIMAN; VENUGOPAL, 2013; BOTRAN et al., 2014; YANG et al., 2013; LIN et al., 2012;
FERRARIS et al., 2012; AL-HAIDARI; SQALLI; SALAH, 2013).

Suleiman et al. (SULEIMAN; VENUGOPAL, 2013) determined when and how to add
or remove instances of servers in cloud environments. They built an analytical model to study
the effects of some metrics and their respective thresholds, such as the CPU utilization, the
application response time, monitoring time windows, and the number of requests to a Web service.
Using the proposed elasticity models and algorithms, they conducted simulation experiments
with a number of elasticity rules with different CPU utilization thresholds. They have validated
the resulting metrics against the results from the experiments have conducted using the same
rules and workload on Amazon EC2. The simulation results demonstrated reasonable accuracy of
their elasticity models and algorithms in approximating CPU utilization, application’s response
time, and number of servers. The models have been able to capture the trends and relationship
between changing CPU utilization thresholds and these metrics with acceptable variations.

Suleiman et al. (SULEIMAN; VENUGOPAL, 2013) did not consider the subsystems
or specific mechanisms of the scalable web service, i.e., modeled only the architecture of the
main system at a high level, using a queue-based model. The application used was a simple
web service (non-composite). Suleiman et al. (SULEIMAN; VENUGOPAL, 2013) did not try
to identify the most impacting factors on the system. In our work, we conducted analyses on
models and experimental designs, considering the whole system and also some subsystems and

1.3. RELATED WORKS 19

details of specific mechanisms.
Al-Haidari et al. (AL-HAIDARI; SQALLI; SALAH, 2013) analyzed the impact of

configuring some factors (CPU utilization threshold and scaling size) on the performance of
Amazon EC2 (AMAZON, 2014a) services. They aimed at improving performance indices by
configuring system parameters. A queue model similar to that proposed by Suleiman was used in
the system behavior simulation. From the simulation results, they found that such configuration
parameters of the provisioning mechanism have a considerable impact on the performance and
cost of cloud services. In addition, they formulated and solved optimization problems for tuning
the upper CPU utilization threshold and scaling size based on input loads, considering both the
cost and the response time.

In a similar manner to the study of Al-Haidari et al. (AL-HAIDARI; SQALLI; SALAH,
2013) our dissertation first focuses on presenting a model that includes the auto scaling mecha-
nism. Second, our model mainly considered tuning some parameters related to a cloud provider
and not to the cloud customers. Finally, in our study, we present the impact of the auto scaling
configuration parameters on the mean response time of the web service hosted in the cloud.
Whereas Al-Haidari et al. only consider the factors CPU utilization threshold and scaling size,
we consider several other factors. As well as Suleiman et al. (SULEIMAN; VENUGOPAL,
2013), Al-Haidari et al. (AL-HAIDARI; SQALLI; SALAH, 2013) also did not consider the
subsystems or specific mechanisms of scalable web services.

In order to achieve the scalability, is important to know when and how to scale virtual
resources assigned to different services. Yang et al. (YANG et al., 2013) used a linear regression
model to predict the workload for services in a virtualized environment, and proposed an auto
scaling mechanism to preallocate or free virtual resources according to the predicted workload.
The automatic scaling mechanism combines the realtime scaling and the pre-scaling. Vertical
scaling is implemented by changing the partition of resources (e.g. CPU, memory, storage,
etc.) inside a VM, modern hypervisors support on-line VM resizing without shutting it down.
The vertical scaling can scale virtual resources in a few milliseconds, according to them, for
this reason, this type of technique can be in realtime scaling. The horizontal scaling adjusts
the amount of Virtual Machine (VM) instances, it incurs a considerable waste of resources
sometimes. Beyond that, the horizontal scaling takes several minutes to boot a VM, and the new
VM cannot be used at once. According to them, for this reason, this type of technique can be in
pre-scaling. Experimental results are provided to demonstrate that this approach can satisfy the
user SLA while keeping scaling costs low.

However, the pre-scaling algorithm proposed by Yang et al. could be improved, if it
took into account adjustments on various parameters that involve VM instantiation, and not only
the types of VMs. They also overlook the time that the auto scaling monitoring mechanism
takes for detecting that the threshold violation, and thereby increase or decrease a resource at
realtime. Depending on this monitoring time, the vertical scaling can suffer long delays. The
work proposed by Yang et al. (YANG et al., 2013) contributes to a lower risk of SLA violation,

1.3. RELATED WORKS 20

however, they should evaluate the parameter settings of scaling mechanisms, in order to improve
even more their proposal.

Lin et al. (LIN et al., 2012) developed an auto scaling system and proposed an algorithm
capable of analyzing the changes of workload in a web application. According Lin et al. (LIN
et al., 2012), most of the existing solutions are subject to some of the following constraints:
replying on user-provided scaling metrics and threshold values; employing the simple Majority
Vote scaling algorithm, which is ineffective for scaling web applications; and lack of capability
for predicting workload changes. Their auto scaling system is not subject to the aforementioned
constraints. The ability of inferring the workload in advance is used to reduce the impact of
some factors on system performance. The experiment results demonstrate that the proposed auto
scaling system can keep the response time of Web applications low even when facing sudden
load changing.

Ferraris et al. (FERRARIS et al., 2012) investigated the performance of some auto
scaling characteristics offered by the cloud providers Amazon and Flexiscale. They aimed at
analyzing patterns of a useful configuration for executing web applications in the cloud, and
highlighted the critical factors which affected the performance of both providers. They performed
a large set of experiments that demonstrated the importance of tuning correctly the auto scaling
parameters. The experiments showed that the tuning of auto scaling parameters is challenging
and more work shall be developed in order to implement a pro-active behaviour, since simple
actions triggered after threshold violations cannot provide performance guarantees under critical
workload conditions.

Notice that the work of Ferraris et al. (FERRARIS et al., 2012) is very close to our
proposal. They consider the auto scaling monitoring period and VM instantiation in different
scenarios. Their work proposes parameter settings in order to check the impact on performance,
however they perform only few adjustments in each scenario. Our dissertation not only adjusts
the scenarios, but also varies each parameter in a reasonable range of possible values, and verify
the impact of these changes on a performance metric, i.e., we performed parametric sensitivity
analysis through the proposed analytical model. Despite considering in the experimental design
many of the factors that we also have studied, Ferraris et al. did not perform statistical analysis
of the most relevant factors that deserve priority in the auto scaling settings. Furthermore, the
stochastic models that we propose may help to analyze and predict various metrics of the systems
and its subsystems. Beyond those observed in experiments, going a step further from the work
of Ferraris et al..

In (SOUSA et al., 2012), Sousa et al. evaluated the performance of distinct VM types
in the Eucalyptus platform, using well-known benchmarks. Their analysis enables to assess
the quality of service and prevent performance degradation related to fluctuations in workload
in private clouds. The relationship of that work with ours is just in the proposal to properly
configure one or more parameters, while also pointing out factors and scenarios that need more
attention for adjustments.

1.3. RELATED WORKS 21

Table 1.1 shows the relationship between the proposals of this dissertation and main
related works. Notice that majority of mentioned authors studied environments of public cloud
computing, whereas we performed experiments in a private cloud environment. All authors that
evaluated composite web services did not use any cloud environment. The remaining evaluated
a simple web applications only. One work specifically evaluated the auto scaling monitoring,
and two the VM instantiation stage. The majority investigated only the process of auto scaling
as a whole. Everyone that used stochastic models do not consider any cloud environment. In
our models we consider cloud environment, and in addition the elasticity mechanisms. Our
main distinction is the employment of hierarchical models in a context of cloud-based web
services. The hierarchical heterogeneous approach enables representing details of specific
processes (subsystems) of the main system, such as auto scaling monitoring, VM instantiation,
and the calls for composite web service, thus, most of the related works do not consider such
subsystems. The hierarchical model comprises an SPN as main model and CTMC as submodels
of the main model. In addition, all studies using analytical modeling did not employ the design
of experiments. Only three papers consider Design of Experiments (DoE), however without
proposing models. Our study used models and DoE for parametric sensitivity analysis, just one
paper applied such a type of study, however, only on the model. Table 1.1 highlights that our
work merges the various contributions that are lacking in related works.

Table 1.1: Relationship between the proposals of this dissertation and related works

Main contributions of the dissertation

C
lo

ud
Ty

pe

E
va

lu
at

es
co

m
po

si
te

w
eb

se
rv

ic
e

E
va

lu
at

es
si

ng
le

w
eb

se
rv

ic
e

E
va

lu
at

es
al

la
ut

o
sc

al
in

g
pr

oc
es

s

E
va

lu
at

es
au

to
sc

al
in

g
m

on
ito

ri
ng

E
va

lu
at

es
V

M
in

st
an

tia
tio

n

U
se

s
m

od
el

s

H
et

er
og

en
eo

us
hi

er
ar

ch
ic

al
m

od
el

in
g

D
oE

Pa
ra

m
et

ri
c

se
ns

iti
vi

ty
an

al
ys

is

This dissertation Private 3 3 3 3 SPN, CTMC 3 3 3

(SILVA et al., 2006) 3 SPN
(ZHONG; QI; XU, 2008) 3 SPN
(REN et al., 2009) 3 DTMC
(SATO; TRIVEDI, 2007) 3 CTMC 3

(MATOS; MACIEL; SILVA, 2013) 3 CTMC
(SULEIMAN; VENUGOPAL, 2013) Public 3 3 3

(YANG et al., 2013) Public 3 3 3

R
el

at
ed

W
or

ks

(LIN et al., 2012) Private 3 3

(FERRARIS et al., 2012) Public 3 3 3 3 3

(SOUSA et al., 2012) Private 3

1.4. STRUCTURE OF THE DISSERTATION 22

1.4 Structure of the dissertation

The remaining parts of the dissertation are organized as follows. Chapter 2 presents all
the theoretical basis for the work, introducing the main concepts regarding cloud computing, and
then we have approached the foundations performance evaluation of systems by focusing on
measurement and analytical modelling. Chapter 3 describes the composite web service system
evaluated here and its mechanisms (or subsystems), providing a glance at the interaction between
components and their behavior. Chapter 4, presents details on the methodology of performance
evaluation adopted in this dissertation. Shortly thereafter we present the models proposed for the
prediction of some performance metrics. Chapter 5, presents the results of the models and design
of experiments. These analyses are arranged in four case studies. Each case study includes
sensitivity analysis on certain parameters of the evaluated mechanism. Chapter 6 draws the final
conclusions for this study by presenting its main contributions and suggesting possible future
studies.

232323

2
Background

This chapter presents the main concepts about cloud computing (EUCALYPTUS, 2014a),
and performance evaluation of systems, through analytical techniques using hierarchical model-
ing, and measurement with the DoE.

2.1 Cloud Computing

Cloud computing, by definition is usually defined as the on-demand delivery of Information
Technology (IT) resources and applications via the Internet with pay-as-you-go pricing (AMA-
ZON, 2015). Figure 2.1 illustrates in a general way the six stages in the history of computing
paradigms: from mainframes and thin terminals to PCs, from networking computing to grid and
cloud computing (VOAS; ZHANG, 2009; FURHT, 2010).

In stage 1, mainframes are shared with many users and accessed through terminals
(keyboards and monitors). In stage 2, personal computers become powerful enough to suit all
the daily needs of users, thus there is no need to share a mainframe with other users. Stage
3, introduces computer networks that allow multiple computers to connect to each other. PCs,
laptops, and servers are connected together through local networks to share resources and increase
performance. In stage 4, local networks are connected to other local networks forming a global
network such as the Internet to use remote applications and resources. In stage 5, grid computing
provided shared computing power and storage through a distributed computing system, i.e.,
the people use PCs to access a grid of computers in a transparent manner. In stage 6, cloud
computing lets you access and explore hardware and software resources available on the Internet
in a scalable and simple way (VOAS; ZHANG, 2009; FURHT, 2010).

The U.S. National Institute of Standards and Technology (NIST) defines cloud computing
as follows:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction (MELL; GRANCE, 2011).

2.1. CLOUD COMPUTING 24

Figure 2.1: Computing paradigm shift over six distinct stages.

In Figure 2.1, the cloud computing paradigm is shown in conceptual form, because all
resources (hardware or software) are not visible to the user, i.e., they are offered in a transparent
manner as services. The services are accessed of the Internet through standard interfaces. Cloud
computing thus refers to the techniques that enable and facilitate this scenario. Therefore, for the
cloud computing paradigm, there is no need for powerful PCs, because all services are processed
on servers on the Internet. From this perspective, cloud computing seems like a “return” to
the original mainframe paradigm. Although, the cloud computing paradigm is not that simple.

2.1. CLOUD COMPUTING 25

Unlike a mainframe, which is a physical machine that offers finite computing power, a cloud
represents a highly scalable set of resources on the Internet, suggesting virtually infinite power
and capacity. Meanwhile, unlike a simple terminal acting as a user interface to a mainframe,
a PC in the cloud computing paradigm possesses enough power to provide a certain degree
of local computing and caching support (VOAS; ZHANG, 2009; FURHT, 2010). The cloud
model comprises five essential characteristics, three service models, and four deployment models,
which are described as follows.

2.1.1 Essential Characteristics

The NIST specifies that cloud computing has five essential traits (MELL; GRANCE,
2011; EUCALYPTUS, 2014c):

� On-demand self-service: Users are able to provision infrastructure, development
tools, software, and other resources on their own, often via a Web browser. As such,
they can get what they need when they need it, without having to go through a service
provider or conduct a lengthy procurement process (EUCALYPTUS, 2014c).

� Broad network access: The resources (e.g., storage, processing, memory, and
network bandwidth) are available through the network, and can be accessed by
different platforms (e.g., mobile phones, tablets, laptops, and workstations) in a
transparent manner through standardized mechanisms (MELL; GRANCE, 2011).

� Resource pooling: The resources of several physical servers are combined and
offered to different types of customers (multi-tenant model), and dynamically dis-
tributed according to the current demand of the customer. There is a sense of location
independence of these resources, i.e., customers do not have control or knowledge
over the exact location of the resources. But at a higher level of abstraction, through
a customer’s control panel can be configured (e.g., country, state, or datacenter)
(MELL; GRANCE, 2011).

� Elasticity: Cloud resources are flexible, capable of being dynamically reassigned
and/or released in response to sudden changes in user demand (EUCALYPTUS,
2014c).

� Measured service: Users and administrators can monitor and control how resources
are utilized. As a result, they can track cloud computing spend, which often follows
a variable, pay-as-you-go business model (EUCALYPTUS, 2014c).

2.1.2 Service Models

The services offered by cloud computing can be presented as a layered architecture
(FURHT, 2010), as show in Figure 2.2. These services are also known as business models. NIST

2.1. CLOUD COMPUTING 26

formally defines three service models for cloud computing: infrastructure as a service, platform
as a service, and software as a service.

Infrastructure as a Service (IaaS): Cloud providers offer storage, processing, mem-
ory, and network where customers can install operating systems and applications. The cloud
infrastructure control is the responsibility of the providers, customers only have control over
operating systems, applications, storage configurations, and possibly limited control of network
components (e.g., host firewalls). Thus, customers may use infrastructure of third-party servers
paying only for what you use. Without worrying about security, maintenance, and space, while
decreasing spending on professionals and cooling (MELL; GRANCE, 2011; BAUER; ADAMS,
2012).

Platform as a Service (PaaS): Provides to developers of software a development environ-
ment, allowing the implementation of the applications developed using such an environment.
Developers have no control over the infrastructure, but only access to the development environ-
ment configurations and applications. PaaS services include: operating system, virtual desktop,
web services delivery and development platforms, and database services (MELL; GRANCE,
2011; BAUER; ADAMS, 2012).

Software as a Service (SaaS): This service model provides applications running on a
cloud. SaaS applications include: e-mail and office productivity suites, Customer Relationship
Management (CRM), Enterprise Resource Planning (ERP), social networking, collaboration,
document, and content management. The customer does not manage or configure the cloud
infrastructure, but it is possible limited settings for specific applications. (MELL; GRANCE,
2011; BAUER; ADAMS, 2012).

Figure 2.2: Relationship between the service models

2.2. PERFORMANCE EVALUATION OF SYSTEMS 27

2.1.3 Deployment Models

There are many issues to consider when moving an enterprise application to the cloud
environment. For example, some service providers are mostly interested in lowering operation
cost, while others may prefer high reliability and security. Accordingly, there are different types
of cloud computing deployments, each with its own benefits and drawbacks (ZHANG; CHENG;
BOUTABA, 2010). The NIST recognizes four cloud deployment models:

� Private Cloud: The cloud infrastructure is provided to a single organization, i.e.,
the resources are not shared with more than one organization. Private clouds are
managed by the organization itself, thus is possible to get even more security on the
information. (MELL; GRANCE, 2011; EUCALYPTUS, 2014a).

� Community Cloud: The cloud infrastructure is provided for exclusive use by a
specific community of consumers from organizations, i.e., the resources are shared
with more than one organization that have shared concerns (e.g., mission, security re-
quirements, policy, and compliance considerations). Community clouds are managed
by one or more organization in the community (MELL; GRANCE, 2011).

� Public Cloud: The cloud infrastructure resources are shared to the general public
(e.g., companies, universities, governments, and common customers). The infras-
tructure is provided and managed by the cloud providers. For this model, security
requirements is the subject of several studies and debates (MELL; GRANCE, 2011;
EUCALYPTUS, 2014a).

� Hybrid Cloud: This type of infrastructure combines two or more distinct cloud
infrastructures (private, community, or public). Through mechanisms that have stan-
dardized technology (e.g., Application Programming Interface (API)s) it is possible
to balance the workload between the two or more infrastructure when a predefined
threshold is reached (MELL; GRANCE, 2011; EUCALYPTUS, 2014d).

2.2 Performance Evaluation of Systems

System administrators need to provide the highest performance at the lowest cost. A
performance evaluation is necessary when a system administrator wants to compare a number of
alternative configuration scenarios to find the best one. It is also used to compare two similar
systems and decide which one is the best for a given task. Performance evaluation can also
help to determine how well a system is performing certain tasks, and if some improvements
are necessary. Generally, evaluating the performance of a system means to verify its behavior
according to a defined metric. The researcher must select appropriate evaluation techniques (e.g.:

2.2. PERFORMANCE EVALUATION OF SYSTEMS 28

analytical modeling, simulation or measurement), perform a statistical analysis to identify possi-
ble bottlenecks and propose improvement solutions. This work applied a parametric sensitivity
analysis from the analytical modeling with SPN and CTMC models, and measurements based
on the DoE technique.

2.2.1 Measurement

DoE technique allows to obtaining a maximum of information about a system, regarding
many factors, with a reasonable number of experiments and effort (JAIN, 2008; MONTGOMERY,
2012). A set of experiment executions planned through DoE can be analyzed to determine
if the factors have significant effects, or if the differences in the observed effects are due
to variations caused by measurement errors and not controlled parameters (GUIMARÃES;
MACIEL; MATIAS JR, 2013; JAIN, 2008; MONTGOMERY, 2012).

This study adopts the General Full Factorial Design, which uses all possible combina-
tions of levels for all factors, i.e., there are no limits to the number of factors and the number of
levels. This type of DoE allows every configuration to be examined, so we can find the effects
of all factors and their interactions, which is an advantage; the disadvantage is that the cost of
analysis can be very high if the number of factors and levels is too high, and also considering
that each of these experiments may have to be repeated several times. It is possible to reduce the
number experiments by reducing the number of factors, and/or the number of levels for each
factor, or using Fractional Factorial Design instead (JAIN, 2008).

2.2.2 Continuous Time Markov Chains

As it is shown in Figure 2.3, Markov chains can be represented as a directed graph with
labeled transitions, indicating the probability or rate at which such transitions occur. In Markov
chains, the states represent different conditions that the system may follow. The transitions
between the states indicate the occurrence of events (SILVA et al., 2013) (e.g.: the arrival of tasks,
or completion of service). In Figure 2.3, a new task arrives with rate λ , and a server completes
the task with rate µ . For example, Figure 2.3 depicts a model for a system with two servers that
process incoming jobs. If we observe the number of busy servers as a time function, we can
consider it as a random variable or function X(t). Each modification of X over (t) is called state

Xn(t). The set of all possible states is the state space of the model. Thus, it is possible to find the
transition probabilities from a state to its successor Xn+1(t). For this, you need to specify the
probability distribution function of Xn(t). Such sequences or random functions of time are called
stochastic processes. Stochastic processes are processes in which the random variable changes
its state over time (JAIN, 2008; MACIEL et al., 2011; KLEINROCK, 1975). They are usually
adopted to characterize systems whose behavior is inherently probabilistic (SILVA et al., 2013).

Analytical modeling may consider a random variable or several sequences or families of
random variables. With only one random variable is simple to know what is the probability of

2.2. PERFORMANCE EVALUATION OF SYSTEMS 29

its states over time (stationary) probability or at a specific time (transient) probability. Those
probabilities are obtained by computing the distribution function. However, when we represent a
number of phenomena in a system, i.e., several random variables, the calculation may be complex,
because it requires computing the joint distribution function. On the other hand, the calculation of
probabilities for a random variable can be simplified when applied to an exponential distribution

function or geometric distribution function. Markov chains is a state space model widely adopted
to work with such distribution functions, and therefore simplify the analysis of systems modeled
through many random variables.

Figure 2.3: Example of a CTMC model

Markov chains are associated to a Markov process (HAVERKORT, 2002), and are
outstanding stochastic models, used to analyze a variety of systems (SILVA et al., 2013). We
have a Markov process if the past history is not important to know the probability of reaching
a given future state. Only the current state is enough to know such a probability (property
known as lack of memory). When the Markov process has a discrete state space, then it is
known as a Markov chain. A Markov chain with discrete time parameter is called a DTMC. On
the other hand, if the time parameter assumes real values, the model is called a CTMC (JAIN,
2008; MACIEL et al., 2011; STEWART, 1994). In a homogeneous DTMC, the time spent in a
state follows a geometric distribution, while in the homogeneous CTMC follows an exponential
distribution. Markov chains are said to be homogeneous, when the transition probability between
states does not depend on time but only on the current state (MACIEL et al., 2011). Markov
chains have been used extensively in dependability, performance, and performability modeling
(MACIEL et al., 2011; TRIVEDI, 2001). CTMC was a useful modeling formalism for evaluating
the performance of the private cloud system studied in this work.

2.2.3 Stochastic Petri Nets

Petri Nets (PN) (MURATA, 1989) are a family of formalisms very well suited for
modeling several system types, since concurrency, synchronization, communication mechanisms
as well as deterministic and probabilistic delays are naturally represented. The original PN does
not have the notion of time for analysis of performance and dependability. The introduction of
duration of events associated with PN transitions results in a timed Petri Net. A special case of
timed Petri Nets is the Stochastic Petri Net (SPN) (MOLLOY, 1982), where the trigger times

2.2. PERFORMANCE EVALUATION OF SYSTEMS 30

of the transitions are considered random variables with exponential distribution. A SPN can be
translated to a CTMC, which may then be solved to get the desired performance or dependability
results. This work adopts a particular extension, namely, SPN (MARSAN et al., 1994), which
allows the association of stochastic delays to timed transitions using the exponential distribution,
and the respective state space can be converted into Continuous Time Markov Chains (CTMC)
(TRIVEDI, 2001).

Figure 2.4 depicts an example of an SPN model. Building a Markov model manually
may be tedious and error prone, especially when the number of states becomes very large. SPN
family of formalisms is a possible solution to deal with such an issue.

Places are represented by circles, whereas transitions are depicted as filled rectangles
(immediate transitions) or hollow rectangles (timed transitions).

Arcs (directed edges) connect places to transitions and vice versa. Tokens (small filled
circles) may reside in places, which denote the state (i.e., marking) of an SPN. An inhibitor arc
is a special arc type that depicts a small white circle at one edge, instead of an arrow, and they
usually are used to disable transitions if there are tokens present in a place. The behaviour of
a SPN is defined in terms of a token flow, in the sense that tokens are created and destroyed
according to the transition firings (GERMAN, 2000).

Immediate transitions represent instantaneous activities, and they have higher firing
priority than timed transitions. Besides, such transitions may contain a guard condition, and a
user may specificity a different firing priority among other immediate transitions. SPNs also
allow the adoption of simulation techniques for obtaining dependability and performance metrics,
as an alternative to the generation of a CTMC. Regarding SPN formal definitions and semantic,
the reader is referred to (MARSAN et al., 1994).

Figure 2.4: Example of a SPN model

2.2.4 Parametric Sensitivity Analysis

Parametric sensitivity analysis aims at identifying the factors for which the smallest
variation implies the highest impact in model’s output measure (FRANK, 1978; HAMBY, 1994).

2.2. PERFORMANCE EVALUATION OF SYSTEMS 31

The main aim of parametric sensitivity analysis is to predict the effect on outputs (measures) with
respect to variations in inputs (parameters), helping to find performance, availability, or reliability
bottlenecks (BLAKE; REIBMAN; TRIVEDI, 1988). There are many ways of performing
parametric sensitivity analysis. Factorial experimental design (JAIN, 2008), correlation analysis
and regression analysis (ROSS, 2010) are some well known techniques. The simplest method is
to repeatedly vary one parameter at a time while keeping the others constant. When applying
this method, a sensitivity ranking is obtained by computing the changes to the model output.

Another useful method, known as differential analysis, computes partial derivatives of
measures of interest with respect to each input parameter. This method is considered as the
backbone of many parametric sensitivity analysis techniques (HAMBY, 1994). The sensitivity of
a given measure Y , which depends on a specific parameter θ , is computed as shown in Equation
2.1, whereas Equation 2.2 provides scaled sensitivity.

Sθ (Y) =
∂Y
∂θ

,
�
 �	2.1

SSθ (Y) =
λ

Y
∂Y
∂θ

.
�
 �	2.2

Specific methods for performing the differential sensitivity analysis in analytic models
are needed when there is no direct closed-form equations for computing measures of interest,
and finding their derivative expressions. Many papers have already described how to apply
differential sensitivity analysis in a variety of analytic models, including CTMC (BLAKE;
REIBMAN; TRIVEDI, 1988) (OU; DUGAN, 2003), Markov Reward Models (ABDALLAH;
HAMZA, 2002), GSPN (MUPPALA; TRIVEDI, 1990), and Queuing Networks (YIN et al.,
2007).

Partial derivatives are an important means of performing sensitivity analysis, but they
may not be the proper technique in some cases. When the model under analysis has integer-
valued parameters, the partial derivatives approach cannot be employed because it is designed
for input values in a continuous domain. Other prohibitive condition is the usage of simulation
instead of analytical solution for the models, because partial derivatives might not be computable
due to the absence of closed-form equations or systems of equations to solve.

Sensitivity analysis may also be performed by calculating the percentage difference
when varying one input parameter from its minimum value to its maximum value. Such an
approach can be used an alternative for partial derivatives. Hoffman and Gardner (HOFFMAN;
GARDNER, 1983) advocate the employment of each parameter’s entire range of possible values
to compute parameter sensitivities by means of percentage difference. Equation 2.3 shows the
expression for this approach, where max{Y (θ)} and min{Y (θ)} are the maximum and minimum
output values, respectively, computed when varying the parameter θ over the range of its n

possible values of interest.

2.2. PERFORMANCE EVALUATION OF SYSTEMS 32

Sθ (Y) =
max{Y (θ)}−min{Y (θ)}

max{Y (θ)}
,

�
 �	2.3

where
max(Y (θ)) = max{Y (θ1),Y (θ2), ...,Y (θn)},

�
 �	2.4

and
min(Y (θ)) = min{Y (θ1),Y (θ2), ...,Y (θn)}.

�
 �	2.5

Another important method to assess the importance of each parameter is the analysis of a
factorial experimental design. Design of Experiments (DoE) techniques can be used to determine
simultaneously the individual and interactive effects of many factors that may affect the output
measures (JAIN, 2008).

When dealing with hierarchical or composite models, the analysis needs to consider
parameters from every model and determine their impact to the global measure of interest.
Sensitivity indices for each submodel shall be computed and integrated in the computation of
sensitivity of the complete model so we can obtain a unified sensitivity ranking. In (MATOS et al.,
2014), a hierarchical heterogeneous model for mobile cloud computing is evaluated through
a unified sensitivity ranking. Distinct sensitivity indices obtained through partial derivatives,
percentage difference, and DoE are used in such analysis to provide a deeper comprehension of
system characteristics and overcome specific limitations of each approach.

333333

3
Auto-Scalable Private Cloud Environment

Many companies have been investing in private cloud platforms to make use of an existing
infrastructure with full control, allowing greater flexibility in managing their IT services while
ensuring the highest levels of privacy, confidentiality, and security they would possibly have
with a public cloud (EUCALYPTUS, 2014a; SOTOMAYOR et al., 2009). We have evaluated a
composite web application hosted in a private cloud with elastic mechanisms. The following
sections of this chapter describe these systems and their mechanisms (or subsystems), their
interactions and behaviour, i.e., their architectures.

3.1 Eucalyptus Private Cloud

We have chosen the private cloud platform Eucalyptus (Elastic Utility Computing Ar-
chitecture for Linking Your Programs To Useful Systems) as environment for this work, due
to the widely utilization by large companies that offer critical web services. Eucalyptus is
an open source platform that provides IaaS leveraging existing hardware, and running behind
the company’s own firewall (EUCALYPTUS, 2014a). Eucalyptus API is strongly compatible
with the Amazon Web Services (AWS) public cloud engine, enabling users to move workloads
between AWS and Eucalyptus environments. The compatibility allows using tools, scripts, and
images, in both AWS and Eucalyptus, thus taking advantage of ability to build a hybrid cloud.
Eucalyptus is compatible with various Linux distributions including Ubuntu, Red Hat Enterprise,
OpenSuse, Debian, Fedora, and CentOS. It is allows working with Xen, KVM and VMware
ESX/ESXi hypervisors (EUCALYPTUS, 2014a,d).

Eucalyptus has a modular, distributed, and highly scalable architecture. It consists of
five distinct components that are arranged in three layers, represented in Figure 3.1. These
components are software and services that can be installed on the same physical server, or dis-
tributed among distinct machines, i.e., physical servers can be deployed in various architectures
(EUCALYPTUS, 2014e; DANTAS et al., 2012).

In Figure 3.1, the top layer contains only two components. Cloud Controller (CLC)
with Walrus controls all other components of the cloud. The CLC is responsible for presenting

3.1. EUCALYPTUS PRIVATE CLOUD 34

and managing a unified view of virtualized resources (servers, storage and network); it also
exposes an administrative interface for managing the entire cloud infrastructure. Walrus provides
storage for the Eucalyptus Machine Image (EMI), Eucalyptus Kernel Image (EKI), and the
Eucalyptus Ramdisk Image (ERI) that are used to create a VM. Walrus provides persistent
storage at file level, similar to Amazon Simple Storage Service (S3). Walrus provides persistent
storage for both instances running within the cloud, and for programs running out of the cloud.
Therefore, some customers have used the Walrus as a solution of SaaS separately, similar to the
S3 (AMAZON, 2013; EUCALYPTUS, 2014e).

Figure 3.1: Conceptual representation of Eucalyptus architecture

The Cluster Controller (CC) manages services of a single cluster, and data resources of
each physical node collection. Node Controller (NC) is a component installed in each physical
machine that is meant to run instances of VMs. The NC communicates with a hypervisor
(e.g.: KVM, Xen, VMware) to control VMs. A set of NCs is called a cluster and there may be
several clusters (up to eight sets). Storage Controller (SC) builds and shares Eucalyptus Block
Store (EBS) volumes, which are virtual block devices that provide persistent storage for VM
instances (EUCALYPTUS, 2014e).

Eucalyptus Auto Scaling is a mechanism designed to handle applications that require
adding and removing VM instances based on predefined thresholds of selected metrics (e.g.:
CPU usage, number of user requests). Auto Scaling is particularly useful for applications
that exhibit variability in use by hour, day or week. During demand peaks, the auto scaling
mechanism increases the number of VM instances automatically to maintain the performance
of the application hosted in the cloud. In a similar manner, when the demand decreases, the
number of VM instances might be reduced to minimize costs and save physical resources
(EUCALYPTUS, 2014d; AMAZON, 2014b). Eucalyptus Auto Scaling works in conjunction
with CloudWatch and Elastic Load Balancing (ELB) mechanisms. The next section describe in
detail the functioning of these mechanisms.

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 35

Eucalyptus Auto Scaling requires the configuration of three main components: Auto
Scaling group, launch configuration, and scaling plan. An Auto Scaling group should contain all
information of current VM instances, and specification of the minimum and maximum number
of instances. A launch configuration has information that Auto Scaling needs to instantiate a
VM. Scaling plan is a set of policies defining how and when Auto Scaling automatically acts
in response to an alert from CloudWatch. In addition to operations defined in the scaling plan,
Eucalyptus Auto Scaling monitors health of the instances periodically. If by chance an instance
fails, a new instance is started (EUCALYPTUS, 2014d).

3.2 Scalable Composite Web Service Architectures

Based on the mentioned descriptions in before section, we defined the evaluation envi-
ronment, i.e., private cloud platform, its components, its interfaces, interactions and settings.
Therefore, we used an architectural configuration based on Eucalyptus platform, as an example to
characterize the performance of elasticity mechanisms on a private cloud environment. However,
the study of this work may be applied to other cloud infrastructures. We decided to use the
Eucalyptus as the study environment for this paper, as large companies that offer critical web
services use it widely. Another reason for us to have chosen Eucalyptus is that the elasticity
mechanisms (e.g., auto scaling) were only incorporated in its latest 3.4 version, that is, few
performance studies were applied until then.

The application evaluated here is an event recommendation mashup (MATOS; MACIEL;
SILVA, 2013), i.e.: a composite web service, which is hosted on a VM of the Eucalyptus NC.
This mashup receives the location (city or neighborhood) from the user and combines data from
publicly available web services in order to recommend a musical event that will occur nearby.

Figure 3.2 depicts a UML activity diagram for such a service. The first activity is the
search for musical events around the current location of the user. The location data might be
acquired by communicating with a Global Positioning System (GPS) application, or manually
provided by the user. After obtaining a list of nearby musical event, the application issues
concurrent calls to two distinct services: search on venue statistics, such as average users rating
of previous events in that concert place; and search for similarities between the lineup of artists
in the event and the user’s preferences.

When data from both services are acquired, the mashup selects the best event based
on the venue and artist criteria. Once the event is selected, the application searches for map
directions from the user current place to the event venue, and gets a link for one sample song
from the main artist in that event. The last activity is the presentation of all gathered information
to the user. We elaborated a CTMC submodel to represent an event recommendation mashup
application, presented in the next chapter.

The mashup application must take advantage of elasticity mechanisms to avoid perfor-
mance degradation even in sudden bursts of users requests. The elasticity also avoids wasting

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 36

system resources in low workload periods. The Eucalyptus Auto Scaling mechanism is responsi-
ble for adapting the number of VMs that run the web service.

Figure 3.2: Event recommendation mashup architecture

The Auto Scaling interacts with the CloudWatch and ELB components to avoid perfor-
mance degradations through the creation of new VM instances when a given metric reaches a
threshold predefined by the system administrator. This architecture is depicted in Figure 3.3, the

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 37

ELB distributes client requests to the existing VMs of the target web application (mashup). The
CloudWatch monitors established metrics (e.g.: average number of web requests per second,
CPU or memory utilization, idle VMs, etc.) periodically (EUCALYPTUS, 2014d).

(a) CloudWatch triggers an alarm for Auto Scaling

(b) ELB automatically distributes the requests considering the new VM

Figure 3.3: Scalable Web service architecture

The CloudWatch service inserts data from monitored metrics at arbitrary intervals and
extract statistics of the collected data for a particular time interval (time window), with a user-
defined granularity (EUCALYPTUS, 2014f). Statistical information allows making operating
and business decisions.

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 38

When a certain condition is met (e.g.: a poor performance metric), as it is illustrated in
Figure 3.3 (a), the CloudWatch triggers an alarm for Auto Scaling, which instantiates one or more
VMs. Shortly thereafter, as it is illustrated in Figure 3.3 (b), ELB automatically distributes the
requests considering the new VM. The collaboration of these services results in a performance
gain and allows an efficient usage of cloud resources, while it might also be used for fault
tolerance purposes (EUCALYPTUS, 2014d). We elaborated a SPN main model to represent this
auto scalable Web service, presented in the next chapter.

Figure 3.4 (a) details of the auto scaling monitoring (CloudWatch process). CloudWatch
monitors information that is used by Auto Scaling to add or remove instances. Note that while
workload arrives in a VM, the CloudWatch, after a certain latency, monitors a metric (e.g.:
average CPU utilization of all VMs) and adds the value in the NC repository, along with the
time stamp of data collection. This information is collected from repositories of all NCs each 5
minutes (by default), and sent to a unified repository on CLC that gathers data from all clusters.

(a) Auto scaling monitoring process architecture

(b) VM instantiation process architecture

Figure 3.4: Detailed representation of the auto scaling process architectures

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 39

At the end of a specified period of time (time window), CloudWatch aggregates the
metric values from the CLC repository, which were added within the range of the time window.
Statistics (e.g.: minimum, maximum, average) are computed from the aggregate data, and
if the result reaches the specified threshold, CloudWatch Alarm would modify its state from
ok to alarm. If an alarm state is maintained over a predefined number of time windows, the
CloudWatch Alarm triggers the warning threshold for the Auto Scaling, which performs actions
(i.e.: add or remove instances) based on policies previously determined (EUCALYPTUS, 2014f).

We consider the total time of auto scaling monitoring as metric of interest for the proposed
design of experiment. There are some factors which may influence the performance this phase.
These factors may be easily tuned, such as window time, collected period, and dimension (amount
of VMs monitored). Therefore, in our experiments, the measurement of the CloudWatch (auto
scaling monitoring) starts with the arrival of a workload that violates the predefined threshold,
and finishes when the action was triggered (VM instantiation or termination), as detailed in
Figure 3.4 (a). The auto scaling monitoring process was introduced in a part of the main model
SPN, wherein each monitoring process represented a transition of the SPN model.

The VM instantiation is another important part of the auto scaling mechanism. Every
request for the creation of a new VM instance takes some time to be fully serviced. That time
depends on factors of the Eucalyptus instantiation process, which are explained as follows. As
shown in Figure 3.4 (b), when the auto scaling mechanism —or a user — calls for a new VM
instance, the CLC checks the existence of available resources for creating such a VM. This is
accomplished through queries to the CC, which stores information about its nodes. If there are
enough resources, the CLC reserves a unique identification number for the instance, the CC
assigns the node where the VM should be instantiated, and the NC starts copying three images:
EMI; EKI; and ERI. These images can be downloaded from Walrus or copied from a local cache,
maintained by NC (EUCALYPTUS, 2014d).

The cache will not be used if it is not enabled in system configuration or if the requested
EMI had never been instantiated on that node before. In the latter case, the CLC transfers
EMI from Walrus to the cache and to the NC instance directory. Note that EKI and ERI are
also downloaded if they are not in the NC cache. When the cache is not enabled, the EMI is
transferred directly to the NC instance directory and is not cached for later use. When the cache
is working and the node already has a copy of the EMI, the CLC does not download from Walrus,
but only copies the EMI from the cache to the instance directory (EUCALYPTUS, 2014d).

After obtaining the EMI, EKI, and ERI, the NC interacts with the hypervisor (KVM,
Xen, or VMware) to prepare the disk space required by the VM instance, according to the
chosen VM type (e.g.: m1.small, c1.xlarge, etc.). Such a procedure usually requires creating,
partitioning and formatting virtual block devices. The hypervisor, then, starts the current VM,
completing the instantiation process (EUCALYPTUS, 2014d).

We identified three main phases that occur for instantiating a VM in a Eucalyptus cloud
(CAMPOS ELIOMAR; MATOS; SILVA, 2015a): (i) resource and instance reservation; (ii)

3.2. SCALABLE COMPOSITE WEB SERVICE ARCHITECTURES 40

copy (or download) of the VM image files (EMI, EKI, and ERI); and (iii) VM preparation and
deployment. We consider the time taken by each of these phases as metrics of interest for the
proposed design of experiment, beyond the total instantiation time. There are some factors which
may influence the performance of each phase, and subsequently the overall instantiation process.
Some factors may be easily tuned or influenced by choices of cloud administrators and users,
such as usage of cache, VM type, size of EMI, ERI, and EKI. These three phases are considered
in a CTMC submodel for VM instantiation that is presented in next chapter.

Therefore, in this chapter, four architectures were defined to performance evaluation: (1)
the architecture of the web service running with elastic mechanisms in a private cloud Figure 3.3,
(2) the architecture of the mashup application service Figure 3.2, (3) the architecture of the VM
instantiation mechanism Figure 3.4 (a), (4) and the architecture of the auto scaling monitoring
mechanism Figure 3.4 (b). The following chapters describe the methodology, proposed models,
and the case studies of the systems and mechanisms detailed here.

414141

4
Methodology and Models

This chapter presents the hierarchical heterogeneous modeling proposed to evaluate the
system described in Chapter 3. The main system modeled here is a composite web service
running with elastic mechanisms in a private cloud. The hierarchical heterogeneous approach
enables representing details of specific processes (subsystems) of the main system, such as
VM instantiation, and the calls for the providers of specific web services that compose the
mashup application. The hierarchical model comprises a SPN (MOLLOY, 1982; MARSAN;
CONTE; BALBO, 1984) as main model and CTMC (KLEINROCK, 1975; BOLCH et al., 2001)
as submodels of the main model. Before presenting the models, our approach methodology is
described in next section, which contains a fluxogram with the sequence of activities that were
carried out on the development this work.

4.1 Methodology

The methodology used to evaluate the performance of a composite web service running
with elastic mechanisms in a private cloud, comprises the performing of five general steps,
Figure 4.1: (1) understanding the systems and define the evaluation architectures, (2) design of
experiments of the auto scaling mechanisms, (3) hierarchical heterogeneous modeling of the
evaluation architectures, (4) models validation, and (5) performance evaluation with sensitivity
analysis of the models and experiments. Every step of the methodology was performed related
activities to be presented following:

� Understanding the systems and define the evaluation architectures: The first
activity approaches the system to being solved, and understanding the mechanisms,
their interactions and behaviour. In the previous chapter was presented the system and
its mechanisms, in which four architectures were defined: (1) the architecture of the
web service running with elastic mechanisms in a private cloud, (2) the architecture
of the mashup application service, (3) the architecture of the VM instantiation
mechanism, (4) and the architecture of the auto scaling monitoring mechanism.

4.1. METHODOLOGY 42

Figure 4.1: Methodology for performance evaluation of auto scaling in a private cloud

� Design of experiments of the auto scaling mechanisms: The design of experiments
was also defined based on the first step. We performed various measurements
(testbeds) of the time to complete the auto scaling process, i.e., measure the auto
scaling monitoring time and VM instantiation time. These measurements provide
values for the parameters and validation of the models proposed. The testbed step can
be performed in parallel with the modeling step. Therefore, note that in Figure 4.1 the
two steps are in sequence only for a better understanding of this work methodology.

4.2. SPN MAIN MODEL FOR SCALABLE COMPOSITE WEB SERVICE 43

� Hierarchical heterogeneous modeling of the evaluation architecture: From the
evaluation architectures defined in the previous step, the models were elaborated. In
this work, the modeling process adopts a heterogeneous hierarchical strategy that
uses combinatorial models and state-based models to represent the performance
features of the system. Therefore, for the main system, i.e., for the architecture the
web service running with elastic mechanisms in a private cloud, we elaborate a SPN
main model. For the subsystems of this main model (mashup application service,
VM instantiation, and auto scaling monitoring) we elaborate CTMC models. These
models will be presented in the next section of this chapter.

� Models validation: Through the metrics of the models and experiments, we compare
the results and validate the models with a certain confidence interval. Therefore, our
submodel provides consistent results to those observed in the experimental testbed,
i.e., we verify the equivalence between the models and experiments.

� Performance evaluation with sensitivity analysis of the models and experiments:
After validating the models, we can then analyze them. The models and design of
experiments was used to perform a sensitivity analysis that compare a plethora
of configuration scenarios in these systems. In other worlds, these models and
measurements are used to analyze the impact of some factors on some metrics on
different conditions.

4.2 SPN Main Model for Scalable Composite Web Service

The SPN, depicted in Figure 4.2, is a performance model of the web service deployed
in a private cloud with the auto scaling mechanism. This model captures the main activities
of the system, from client requests to service completion. It also represents the creation and
termination of VM instances through the auto scaling mechanism. The architecture of this model
was presented in previous chapter.

A token in place PReq represents a user request for the mashup. The firing delay of
transition TReq corresponds to the mean time between arrivals of requests. When TReq fires,
it stores one token in the place PSend, which denotes the transmission of requests through the
network. The network latency between client and server is assigned to transition TSend. A
token in place JobAdmission represents user request arrival in the cloud. Such a request may
be admitted by the Load Balancer if its buffer is not full (immediate transition TAccept), or
discarded otherwise (immediate transition TReject). If the request is admitted, it waits in the
place Queue for being assigned to one of the VMs hosting the mashup application. The time
spent by the Load Balancer to forward the request is represented by transition TLB. Notice
that TLB requires one token from place IdleVMs, which initially has two tokens, denoting the
number of available VM instances we defined for initial cloud setup.

4.2. SPN MAIN MODEL FOR SCALABLE COMPOSITE WEB SERVICE 44

Figure 4.2: SPN model for the scalable web service on private cloud

The VMs that are busy processing a user request are represented by tokens in place
BusyVMs. The time that one VM takes to serve a request is assigned to transition TService,
which is refined by a CTMC submodel presented further. Notice that transition TService has an
infinite server firing policy in order to properly represent the parallel execution of all requested
VMs. After processing a request, a response is sent back to the client, this is represented by one
token stored in the place PReply. This activity is denoted by transition TRep. Place PComplete
represents the client response arrival.

The auto scaling mechanism is modeled by places and transitions in the upper part of
the SPN. The place PNodeMetrics and transition TCollectMetrics denote the period that the
CloudWatch collects the metrics results that are stored in the all NCs repositories. TCollectMet-
rics is a deterministic transition, so it properly represents the fixed time interval (collected period)
at which the metrics are collected in the NCs and stored in the cluster repository, represented by
tokens in place PClusterMetrics.

The place PClusterMetrics and transition TWindow denote the periodic trigger of
CloudWatch monitor. TWindow is a deterministic transition, so it properly represents the fixed
time interval (window) at which the CloudWatch waiting to start a summary of the cluster metrics
data, and storing one token in place PCheckMetrics. The transition TCheckThreshold delay
represents the time to summarize and analyze the metrics data of the cluster. But, only the
data that were collected within the current time window, according to the predefined metric.
TCheckThreshold stores a token in place ScaleDecision, which has three outgoing transitions:
TNoScale, TScaleDown, and TScaleUp , that denote the options of holding, remove, or increas-
ing the current number of VM instances, respectively. Table 4.1 presents the enabling functions
for those three transitions.

If the transition TScaleUp fires, it consumes a token from ScaleDecision and stores
a token in place PInstantiation. The transition TInst delay represents the time required for

4.3. CTMC SUBMODEL FOR MASHUP APPLICATION 45

instantiating one VM in the private cloud. A CTMC submodel was developed to represent the
VM instantiation process presented further in detail, hence the delay of TInst is computed from
that submodel.

Table 4.1: Immediate transitions of the SPN model for scalable web service on private
cloud

Transition Description Enabling function Priority
TNoScale Decision of keeping the current number of VMs #IdleVMs≥1 1
TScaleUp Decision of increasing the current number of VMs #IdleVMs<1 1

TScaleDown Decision of decreasing the current number of VMs (#IdleVMs>4) AND (#Queue<1) 2
TAccept Decision of accepting the user request – 1
TReject Decision of rejecting the user request – 1

Notice that TInst requires one token available in the place PoolVMs. Such a place
denotes the maximum capacity (in number of VMs) that might be added to the mashup application.
For the current analysis, there are five tokens in PoolVMs, indicating that the auto scaling might
create up to five new VMs. When transition TInst fires, it stores one token in the place IdleVMs.
The immediate transition TScaleDown represents the activity of terminating VMs in periods
of low workload, in order to avoid under utilization of resources. Table 4.1 shows the function
that determines whether TScaleDown is enabled. Otherwise, if the transition TNoScale fires,
consumes all tokens in ScaleDecision, keeping the number of VMs, i.e., without removing or
adding VMs. Table 4.1 also shows the function that determines whether TNoScale is enabled.

Table 4.1 shows the enabling functions and priorities for each immediate transition
of the SPN model. TNoScale is enabled whenever there is at least one token in the place
IdleVMs. TScaleUp is enabled if there is less than one token in IdleVMs, i.e.: if the place is
empty. TScaleDown requires more than four tokens in IdleVMs. Considering only the enabling
functions, TNoScale and TScaleDown could be simultaneously enabled, but TScaleDown was
assigned the highest priority of both, so it always fires first. The transitions TAccept and TReject
do not have any enabling functions because they depend only on the existence of tokens in place
Buffer_LB. There is an inhibitor arc in TReject coming from Buffer_LB, so TReject can
only fire if Buffer_LB is empty. The arc from Buffer_LB to TAccept only enables transition
TAccept if there is at least one token in Buffer_LB.

It is important to highlight that this SPN shall not be solved through numerical anal-
ysis, but only through simulation, due to the existence of non-exponential timed transitions
(TCollectMetrics and TWindow are deterministic), in this case, we can characterize this model
as a Deterministic and Stochastic Petri Net (DSPN). Next sections deal with the two CTMC
submodels that also comprise our hierarchical heterogeneous modeling approach.

4.3 CTMC Submodel for Mashup Application

A CTMC submodel was created to evaluate the performance of the mashup application
presented in Chapter 3. The CTMC input data are the response times of each individual service

4.3. CTMC SUBMODEL FOR MASHUP APPLICATION 46

depicted in the UML diagram of Figure 3.2. Each state in the CTMC, depicted in Figure 4.3
denotes a service request, the only exception is the final state. The transition rates are estimated
as the reciprocal of mean response time for each web service (1/mrtX). All response times are
assumed to be exponentially distributed. The state “Event Analysis” represents the execution of
concurrent calls to the “Search for Venue Statistics” and “Search for Related Artists” services.

Figure 4.3: CTMC submodel for the event recommendation mashup

The submodel might go to state “Venue Stats Finished”, with a rate of 1/mrtV S, or to
“Similar Artists Finished”, with a rate of 1/mrtSA, indicating which web service replied first.
The state “Top Event Selection” indicates that the responses of both services, i.e.: “Search
for Venue Statistics” and “Search for Related Artists” were received. “Top Event Selection”
also denotes the analysis of all events using the previously collected data, which is completed
with rate 1/mrtT S. Then the submodel goes to state “Additional info search”, representing the
concurrent execution of queries to “Map Search” and “Song Search” services. The submodel
reaches “Map Search Finished” with rate 1/mrtMS, and “Song Search Finished” with rate

4.4. CTMC SUBMODEL FOR VM INSTANTIATION 47

1/mrtSS, denoting which service replied first. After finishing both services, the CTMC finally
reaches state “Complete”, an absorbing state that indicates the end of mashup execution.

4.4 CTMC Submodel for VM Instantiation

Figure 4.4 depicts a CTMC proposed to represent the instantiation process of a VM in a
Eucalyptus private cloud. As mentioned in the previous, this CTMC submodel was developed
to represent in detail the transition TInst of the SPN main model, hence the delay of TInst
is computed from this CTMC submodel. Therefore, TInst corresponds to VM instantiation
process.

In Figure 4.4, the abstract submodel is composed of states RI, CI, DI, PV, and VR.
They mean: RI = reserving instance on Cluster Controller; CI = copying EMI from cache to
the directory of instances in Node Controller; DI = downloading EMI from Walrus to the Node
Controller cache and directory of instances; PV = formatting of virtual block device and VM
configuration by hypervisor, and finally, VR = VM running.

The CTMC submodel begins on RI state. From RI state, the VM instantiation process
begins. If the EMI is already in the node’s cache, the model goes to CI state with rate pCache×
(1/tRI). If the node needs to download the EMI from Walrus, the model goes to DI state with rate
(1-pCache)× (1/tRI). In CI state, the transition to PV state occurs with rate 1/tCI. In DI state,
the transition to PV state occurs with rate 1/tDI. The last step of instantiation process occurs
when the submodel goes from PV state to VR state with rate 1/tPV, indicating that the VM is
running.

Statistical analysis on experimental data does not reject exponential distributions as good
fit for the time of every activity in VM instantiation process, except by tDI. The importance of
the exponential distribution is based on the fact that it is the only continuous distribution that
possesses the memoryless property (TRIVEDI, 2001). Therefore, the generic submodel can
not be considered an actual CTMC, since the times of those two stages are not exponentially
distributed. The submodel is actually a Stochastic Timed Automaton (STA). By means of
poly-exponential refinements (i.e., phase-type distributions), we finally can transform this STA in
a CTMC, using only exponentially distributed transition rates. For such a reason, we refined our
submodel to represent tDI by means of poly-exponential distributions, by means of a moment
matching method described in (WATSON J.F.; DESROCHERS, 1991).

In Figure 4.5, we have split the DI state in a hypoexponential distribution with 4 phases.
The phases are denoted by DI(1), DI(2), DI(3), and DI(4), with rate 1/(tDI/4) for the output
transition of each state. In Figure 4.5, we finally have a CTMC submodel with all exponentially
distributed times. Therefore, this refined submodel will be used to perform additional analyses,
presented in the next chapter.

4.5. CTMC MODEL FOR AUTO SCALING PROCESS 48

Figure 4.4: Generic submodel for performance evaluation of VM instantiation

Figure 4.5: CTMC refined submodel with a hypoexponential distribution of 4 phases in
DI state

4.5 CTMC Model for Auto Scaling Process

The auto scaling process starts with the arrival monitoring of a workload, and finishes
with VM instantiation (when the arrival of a workload that violates the predefined threshold).
VM instantiation is the final step of the auto scaling process, the auto scaling success also
depends on the performance of the instantiation process. Figure 4.6 depicts a CTMC proposed
to represent the auto scaling monitoring and the VM instantiation process in a Eucalyptus
private cloud. This CTMC model was developed to represent some transitions the SPN main
model, that corresponding to the entire scaling process, i.e.: TCollectMetrics, TWindow, and
TCheckThreshold (corresponding to auto scaling monitoring), and TInst (corresponding to
instantiation process).

It should be noted that this CTMC model can not be considered an actual submodel,
since it does not represent only one transition the SPN main model. The intention is to represent
all automatic provisioning process resource. From auto scaling monitoring until the completion
of the VM instantiation. Through this CTMC model we can perform additional analyses, we
carried out a performance evaluation and sensitivity analysis in all parameters of the auto scaling
process.

In Figure 4.6, the abstract model is composed of states AS, RI, CI, DI, PV, and VR.
They mean: AS = auto scaling monitoring (i.e., monitoring, detection, and action); RI = reserving

4.5. CTMC MODEL FOR AUTO SCALING PROCESS 49

instance on Cluster Controller; CI = copying EMI from cache to the directory of instances in
Node Controller; DI = downloading EMI from Walrus to the Node Controller cache and directory
of instances; PV = formatting of virtual block device and VM configuration by hypervisor, and
finally, VR = VM running.

Figure 4.6: Generic model for the auto scaling performance

The model begins on AS state, where the auto scaling mechanism detects the threshold
and triggers an action to instantiate a VM, then the model goes to RI state with 1/tAS rate. From
RI state, VM instantiation process begins. If the EMI is already in the node’s cache, the model
goes to CI state with rate pCache× (1/tRI). If the node needs to download the EMI from Walrus,
the model goes to DI state with rate (1-pCache)× (1/tRI). In CI state, the transition to PV state
occurs with rate 1/tCI. In DI state, the transition to PV state occurs with rate 1/tDI. The last step
of instantiation process occurs when the model goes from PV state to VR state with rate 1/tPV,
indicating that the VM is running. Note the states that are part of the instantiation process, are
the same states and rates shown in the instantiation submodel presented in the previous section.

Statistical analysis on experimental data does not reject exponential distributions as good
fit for the time of every activity in auto scaling process, except by tAS and tDI. Therefore, the
abstract model is actually a STA. By means of poly-exponential refinements, we finally can
transform this STA in a CTMC, using only exponentially distributed transition rates. For such a
reason, we refined our model to represent tAS and tDI by means of poly-exponential distributions,
by means of a moment matching method described in (WATSON J.F.; DESROCHERS, 1991).

In Figure 4.7 (a), we have split the AS state outgoing rate in an Erlang distribution with
6 phases. The phases are denoted by AS(1), AS(2), AS(3), AS(4), AS(5), and AS(6), with rate
1/(tAS/6) for the output transition of each state.

In Figure 4.7 (b), we have split the DI state in a hypoexponential distribution with 4
phases. The phases are denoted by DI(1), DI(2), DI(3), and DI(4), with rate 1/(tDI/4) for the
output transition of each state.

In Figure 4.7 (c), we finally have a CTMC submodel with all exponentially distributed
times. This refined submodel will be used to perform additional analyses, presented in the next
chapter.

4.5. CTMC MODEL FOR AUTO SCALING PROCESS 50

(a) Model with a Erlang distribution of 6 phases in AS state

(b) Model with a hypoexponential distribution of 4 phases in DI state

(c) Refined CTMC model with all exponential distributions

Figure 4.7: Refined CTMC models by polyexponential distributions

515151

5
Case Studies

This chapter presents the results of performance evaluation for the scalable web service
system. In the first case study (Section 5.1) it was performed a parametric sensitivity analysis
through design of experiments in a real private cloud testbed, for auto scaling monitoring and
VM instantiation. We carried out most analyses through the stochastic models in order to predict
metrics and compare a plethora of configuration scenarios in that system. We used the models
to perform parametric sensitivity analyses, by changing the model rates, a factor at a time, and
checking how the total response or execution time was affected. The two case study (Section
5.2) evaluate the performance of a composite web service, the second (Section 5.3) evaluate
the performance of the instantiation process, the third case study (Section 5.4) evaluate the
performance of the auto scaling process .

5.1 Case Study One

This case study shows the various measurements of the time to complete the auto scaling
process, which includes the auto scaling monitoring time and VM instantiation time. These
measurements are used to analyze the impact of some factors on the average time under distinct
conditions. In addition, it provide values for the parameters of the proposed models and help on
the validation of those models.

The experimental performance evaluation carried out in this work comprises 5 steps
as shown in Figure 5.1. These steps correspond the activities that contemplate the design
of experiment (DoE) phase present in the methodology of the previous chapter. The first
step corresponds to the identification of main phases of the mechanisms evaluated. Next, it
is important to define some details for planning the experimental design (metrics, factors and
levels). The measurement tools and the workload used during experiments are further determined.
The remaining steps are execution of experiments or data collection, and analysis of results.

5.1. CASE STUDY ONE 52

Figure 5.1: Activity diagram of the experimental evaluation

5.1.1 DoE for Auto Scaling Monitoring

In order to evaluate the auto scaling mechanism we measured specifically the time to
complete the auto scaling monitoring throughout many experiment runs. In our experiments,
each measurement started when the metric threshold was reached and finished when the action
was triggered (VM instantiation or termination), as detailed in Chapter 3. This section presents
the steps related to the experiment performed, and depicts the analysis of results obtained using
general full factorial DoE technique.

In the second step of this case study (see Figure 5.1) we defined the metrics, factors and
performance evaluation technique for the study of the auto scaling monitoring. As mentioned
previous, before performing an experiment, it is necessary to identify the metrics, factors and
their variables (levels) that might have a certain influence on behavior. Soon after, choose a
appropriate experimental design technique. Therefore, first the metric of interest was identified
as it corresponded to the total time elapsed between reaching the threshold and triggering actions.
After the metric definition, we carefully chose the factors and levels to ensure that likely relevant
aspects of the system were evaluated (GUIMARÃES; MACIEL; MATIAS JR, 2013; JAIN,
2008). Table 5.1 shows the adopted factors and their levels.

Table 5.1: Relevant factors and parameters

Factors Levels

Collection Period (min.) 1, 5

Dimension (VMs) 1, 9

Window Time (min.) 1, 2, 4, 8, 16, 32

As previously explained, we have analyzed three factors: dimension, window time, and
collection period. The dimension corresponds to the amount of VMs monitored. It is expected
that the more VMs are monitored, the longer the time to detect desired metrics (workload). We
have adopted 1 and 9 VMs as levels of the dimension factor.

Another considered factor was window time which is related to the period taken to
observe a metric and store aggregate results according to established policy. If the aggregate
result reaches a defined threshold, an action is performed by auto scaling based on established

5.1. CASE STUDY ONE 53

policy. Therefore, the monitoring window time may have some impact on auto scaling monitoring
total time. The levels of such factor are divided into six periods: 1, 2, 4, 8, 16, and 32 minutes.

The factor collection period was one of the chosen factors because it is associated with
the time interval that CloudWatch collects information from all NCs repositories. CloudWatch
sends these pieces of information to the CLC repository in order to organize the information
in all clusters using a single repository. With very short periods of monitoring window, it was
observed that the factor collection period might influence the time to detect violated thresholds.
Two levels were considered for collection period: 1 minute (default of the Eucalyptus) and 5
minutes.

After setting the metric, and levels of each factor. Finally we choose the experimental
design technique. This study has several factors and more than two levels in one factor Table 5.1.
Therefore, adopting the special case General Full Factorial Design (MONTGOMERY, 2012;
JAIN, 2008).

General Full Factorial Design of Experiments was adopted to study the impact of each
factor on the results. The reasons for adopting this technique in this study type have already been
explained. But in an overview, this method helps to find viable and efficient settings that affect
system performance, considering various measurement scenarios (GUIMARÃES; MACIEL;
MATIAS JR, 2013; JAIN, 2008). Evaluation of systems that involve many factors and levels
usually results in a significant number of experiments that might make the evaluation of results
infeasible (JAIN, 2008). In our case, the total time and the effort required to execute a General

Full Factorial Design of Experiments was not too excessive.
The whole this procedure of the DoE, is shown a general way in Figure 5.2. We performed

this procedure by Minitab tool (MINITAB, 2013). First provide the input parameters (factors
and levels). Then we chose the experimental design technique and analysis appropriate, in we
case General Full Factorial Design. Finally Minitab generated every 24 sheet scenarios or
combinations of all levels of the factors. In order to get results in an acceptable confidence level,
each scenario was replicated 50 times, producing a total of 1200 experiments or measurements.
Considering three factors and corresponding levels, there where 24 execution scenarios, which
are described in Table 5.2.

Table 5.2: Scenarios of the auto scaling monitoring experiment

Factors Scenarios

Collection period 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5

Dimension 1 1 1 1 1 1 9 9 9 9 9 9 1 1 1 1 1 1 9 9 9 9 9 9

Window time 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32 1 2 4 8 16 32

After choosing the metrics, all factors with corresponding levels, and the experimental
design technique. The next step was selecting workloads and tools to measure what it was
planned.

5.1. CASE STUDY ONE 54

General Full Factorial Design

Window
Time

•1min ●2min
●4min ●8min
●16min ●32min

Dimension
•1 VM

•9 VMs

Collection
Time
•1 min

•5 min

Scenario 1 of 24
Collection time: 1 min

Dimension: 1 VM
Window time: 1 min

Figure 5.2: Overview of the experimental design for auto scaling monitoring

Figure 5.3 shows the components of our experimental environment. The cloud envi-
ronment under test is fully based on the Eucalyptus framework and the KVM hypervisor. The
environment setup includes installation and prior verification of the testbed to be used in experi-
ments. In this phase, it was eliminated any type of internal or external interference which may
influence the measurements. Some examples of these actions are: finishing unnecessary pro-
cesses, disabling automatic operating system updates, and ensuring that the network is isolated
from not involved computers.

We use four machines with the same hardware configuration: Intel(R) Core(TM) i7-3770
3.4 GHz CPU, 4 GB RAM DDR3, 500 GB SATA HD. These one machine was configured as
front-end for execution of CLC, CC, SC, and Walrus. The other three run the NCs. The four
machines run CentOS Linux 6 operating system with ext4 filesystem, and the Eucalyptus 3.4
platform. A 10/100 Mbps Ethernet network was adopted to connect the PCs through a single
switch.

Preliminary tests with Eucalyptus auto scaling were performed to verify if the environ-
ment was working as expected, i.e., results of monitored metrics were checked and properly
accounted for one or more instances. We also checked if the tasks were triggered according to

5.1. CASE STUDY ONE 55

Figure 5.3: Components of the auto scaling monitoring environment

defined policies. At the end of this phase, we considered the environment controlled and ready
to perform the experiments.

We created a software script to inject synthetic workloads that made the VMs reaching
the defined CPU utilization threshold, forcing auto scaling triggering actions, whereas registering
the time spent by auto scaling monitoring (detection and action). The workload cycle was
implemented by means of Shell script language functions (Bash – Bourne-again Shell) that
perform the operations we have just mentioned. The Figure 5.4 represents the workload cycle
performed by this script. Each function may be seen below:

� Verify Status Function: To generate the workload and start measuring, we must
ensure that are running only the desired number of VMs. This is possible with the
euscale-set-desired-capacity command, by parameter scale -c we specify the number
of VMs that auto scaling mechanism should work. Furthermore, we need to check
if all the VMs are not with pending status with euca-describe-instances command.
Then, we need to check if the CloudWatch Alarm it’s with OK status, i.e., not its
ALARM status with euwatch-describe-alarms command. Finally, after we certify
that the environment was controlled, we can invoke the function that will start the
workload. This function is represented by a Shell script that is shown below:

5.1. CASE STUDY ONE 56

Verify Status
Function

Workload
Generator
Function

Verify VM
Pending
Function

Figure 5.4: Workload cycle illustration of the auto scaling monitoring.

1 verifyStatus(){

2 euscale-set-desired-capacity scale -c 1

3 v=FALSE

4 while [$v = FALSE] do

5 statusVm=‘euca-describe-instances | grep pending | wc -l‘

6 statusAlarm=‘euwatch-describe-alarms | grep ALARM | wc -l‘

7 if [$statusVm -eq 0] && [$statusAlarm -eq 0] then

8 workloadGenerator

9 v=TRUE

10 fi

11 done

12 }

� Workload Generator Function: We define the scaling policies that the auto scaling
mechanism must instantiate a VM when the level of CPU utilization achieve 40 %
(threshold). The metric that we measure corresponds to the interval between the
breach of the threshold and the beginning of VM instantiation. Therefore, we use the
Lookbusy application (LOOKBUSY, 2013) to generate a synthetic load suddenly.
With the lookbusy -c 50 command, suddenly we generate a CPU utilization level of
50 %. For this reason, this function marks the start time of the metric in the same
moment as the workload is generated. After generating the workload, is invoked the
verify VM pending function that checks when the scaling policy is applied, i.e., when
a VM starts the instantiation process. By invoking this function, the start time of the
metric is passed as parameter, in order to be used in the calculation of metric duration.
This function is represented by a Shell script that is shown below:

5.1. CASE STUDY ONE 57

1 workloadGenerator(){

2 beginTimeThreshold=$(($(date +%s%N)/1000000))

3 ssh -i /home/frontend/Downloads/access.pem 192.168.0.171 "

lookbusy -c 50" &

4 verifyVmPending $beginTimeWorkload

5 }

� Verify VM Pending Function: The previous workload generator function marks
the initial time that the threshold is reached. Then by euca-describe-instances

command, this verify VM pending function continuously checks whether the scaling
policy is triggered, i.e., identifies the time that arises some VM with pending status.
By identifying the pending status, this time is marked. Known initial time of the
threshold, and the action initial time of the scaling policy, is calculated the metric
duration. Finally, the time of the metric is stored in a log file. In order to control the
environment to a new measurement, the synthetic load generator is finalized through
the killall -9 lookbusy command. This function is represented by a Shell script that is
shown below:

1 verifyVmPending(){

2 booting=FALSE

3 while [$booting = FALSE] do

4 statusVm=‘euca-describe-instances | grep pending | wc -l‘

5 if [$statusVm -gt 0] then

6 beginTimeVmPending=$(($(date +%s%N)/1000000))

7 durationMetric=$(($beginTimeVmPending-$beginTimeThreshold))

8 echo $durationMetric >> timess.txt

9 ssh -i /home/frontend/Downloads/access.pem 192.168.0.171 "

killall -9 lookbusy"

10 booting=TRUE

11 fi

12 done

13 }

After that, the process of the synthetic load generator was finalized. The script kills
the VM instantiated, and waited a random time to request a new measurement, i.e., start the
cycle of functions again. For each scenario this cycle was repeated 50 times, according to the
experimental design (see previously section). The time interval required between a cycle and
another, depends on the random time, which is described in the complete script in Appendix A.

The experiment was performed in May 2014. As seen in Table 5.1, we had two levels
for the factor collection period, two levels for the factor dimension, and 6 levels for the factor
window time, resulting in 24 scenarios. In order to get results in an acceptable level of confidence,
each scenario was measured 50 times, producing a total of 1200 experiments.

Table 5.3 shows the total average time in minutes, standard deviation, and coefficient of
variation for each scenario of the auto scaling monitoring. For the sake of conciseness, in the

5.1. CASE STUDY ONE 58

first column header the factor collection period was shortened to C, the factor dimension to D,
and the factor window time to W.

Table 5.3: Results of Each Scenario the auto scaling monitoring

C (min) D (VMs) W (min) Mean (min) Std. Deviation Coef. of Variation

1 1 1 188.6 0.148 0.0008

1 1 2 211.9 28.94 0.1366

1 1 4 222.2 29.98 0.1349

1 1 8 327.4 178.1 0.544

1 1 16 457.5 398.4 0.8707

1 1 32 790.8 872 1.1026

1 9 1 188.6 0.336 0.0018

1 9 2 215 30.12 0.1401

1 9 4 274.2 91.8 0.3348

1 9 8 341 195.1 0.5721

1 9 16 492.9 334.8 0.6792

1 9 32 911.8 900 0.9869

5 1 1 788.6 193.6 0.2455

5 1 2 777.5 328.1 0.4221

5 1 4 747.9 157.2 0.2102

5 1 8 596 334.1 0.5605

5 1 16 678.2 284.4 0.4194

5 1 32 795.8 189.8 0.2385

5 9 1 862.2 361.9 0.4197

5 9 2 814.9 100.1 0.1229

5 9 4 755.9 132.5 0.1727

5 9 8 648 305 0.4708

5 9 16 688.2 292.5 0.4251

5 9 32 860.6 217.2 0.2524

Observing Table 5.3, it should be noted that the total average time for auto scaling
monitoring is at least 3 times lower when the collecting period (C) is changed from 5 (Eucalyptus
default time) to 1 minute, considering window time (W) of 1, 2, and 4 minutes. For W values
between 8 and 32 minutes, this difference is not so significant. Therefore, the C factor was very
important for system performance, but its effect is influenced by the W factor.

The auto scaling monitoring time increased linearly with the changes in W when C
is 1 minute. On the other hand, for a C of 5 minutes, the auto scaling monitoring time has
not a monotonic behavior regarding the changes in W. Thus it is noticeable the existence of

5.1. CASE STUDY ONE 59

some interaction between C and W factors, and their importance for the auto scaling monitoring
time. Focusing on scenarios where the factor dimension (D) was 9 VMs, we did not perceive a
significant difference in time compared with 1 VM.

These results and analyses are not intended to point out the best scenario, since such a
conclusion would be questionable, because it depends on other system conditions. Nevertheless,
the results are useful to guide cloud administrators to configure parameters of their systems.
Additional statistical analyses of the effect and relevance of each factor are presented, and aid at
drawing more accurate and detailed conclusions.

The Table 5.4 presents the effects and relevancies computed for each factor from the DoE
analysis. For the sake of conciseness, the factors are represented by letters: collection period

= A, dimension = B, and window time = C. We adopted in columns the initials DF for degrees
of freedom. The MS (mean square) is calculated dividing the sum-of-squares by degrees of
freedom. The factors which most affect the performance are A, generating a performance effect
with relevance 84.224 %, followed by C with 7.913 %, and AC interaction with 6.743 %. The
factor B with 0.969 % and their interactions (AB, BC, ABC) did not have significant relevance,
since AB got 0.002 %, BC had 0.075 %, and ABC had 0.070 %.

Table 5.4: Effects and estimated relevance to the average total time for auto scaling
monitoring

Factors DF MS F-ratio Relevance P-value

A 1 40184930 356.31 84.224 % 0.000

B 1 462250 4.10 0.969 % 0.043

C 5 3775777 33.48 7.913 % 0.000

AB 1 899 0.01 0.002 % 0.929

AC 5 3217698 28.53 6.743 % 0.000

BC 5 36498 0.32 0.075 % 0.899

ABC 5 34277 0.30 0.070 % 0.911

Error 1176 112780

Such a relevance in percentages was calculated based on F-ratio or F statistical values;
therefore, each result has been obtained in accordance with the proportion of each F-ratio to
the sum of them. The F-ratio is calculated as the ratio of mean square for each factor by the
mean square error. The F-ratio can be understood as the level of impact of each factor on system
performance according to the average variation among its levels. It is also worth noting that the
P-values of the interactions AB, BC, and ABC were above 0.05 (the significance level for this
study), i.e., there is not sufficient evidence that these interactions have a significant effect on
performance improvement. The P-value is calculated based on degrees of freedom and F-ratio,
which are in their turn calculated from the Analysis of Variance (ANOVA) table (JAIN, 2008).

The graph of main effects, Figure 5.5 (a), shows the isolated factors and the effects of

5.1. CASE STUDY ONE 60

their different levels. Since the difference between mean levels was significant, this highlighted
the collection period and window time as high impact factors, as evidenced by the slopes in lines
of both factors. The window time had high impact only from levels 8 to 32, because from 1 to 8
the differences between means were not significant. On other hand, the dimension factor alone
had a much smaller effect, represented by an almost horizontal line.

51

800

700

600

500

400

91

32168421

800

700

600

500

400

collectionTime

A
u

to
 s

c
a
li
n

g
 m

e
a
n

 t
im

e
 (

s
)

dimension

windowTime

(a) Main effects plot

900

600

300

32168421

91

900

600

300

51

900

600

300

collectionTime

dimension

windowTime

1

5

collectionTime

1

9

dimension

1

2

4

8

16

32

windowTime

(b) Interaction effects plot.

Figure 5.5: Main plot and interactions plot for factors effects

The analysis of factor effects one by one is prone to misinterpretation, so it is also
important to analyze the interaction between factors. Figure 5.5 (b) shows the effects of such
interactions. The interactions that have no parallel lines suggest a significant impact on the
measure of interest, i.e., total time of auto scaling monitoring. This is the case of upper right and
lower left grid cells, which represent the interaction between collection period and window time.
It is interesting to observe the distinct behaviors for collection period 1 and 5 on the upper right
cell. Note that for a collection period of 1, the auto scaling monitoring time increased whenever

5.1. CASE STUDY ONE 61

the window time increased, i.e., it had a monotonical behavior. For a collection period 5, the
line decreased for window periods from 1 to 8, and enhanced between 8 and 32. The line did
not have a constant pattern, making it difficult to draw accurate conclusions. Thus, a collection

period of 1 minute is desirable instead of 5 minutes, due to both, lower times for the auto scaling
monitoring, and a more predictable behavior for changes in the window time levels.

Also, it is important to highlight that according to Figure 5.5 (b), all interactions with
factor dimension had parallel lines, confirming the analysis shown in Table 5.4. In other words,
those were interactions without major influences on measured results, and therefore did not
impact performance.

5.1.2 DoE for VM Instantiation Process

Applications running on cloud environments, and using elasticity features, are designed
to create or terminate VM instances according to the current workload level. Such a behavior
avoids the waste of idle resources (e.g.: memory, CPU, disk space, power) in periods of low load,
whereas enables the fast increase of computational power when facing a burst of high load. On
this work, we use an Eucalyptus-based setup as an example to characterize the performance of
the instantiation process in a private cloud environment, but the problem and the evaluation may
be extended to other cloud infrastructures (CARON et al., 2012).

In order to evaluate the process of VM instantiation specifically, we adopted a case
study, measuring the time taken by each phase considered important. Next, we analyze the
results obtained using the full factorial DoE technique. The experimental performance evaluation
carried out in this work was performed in 5 steps as shown previously in Figure 5.1. These steps
aim to analyze the impact of some factors in the mean time to complete the instantiation of a
VM under distinct conditions. We shall obtain accurate measures to analyze the process of VM
instantiation properly. This performance analysis is helpful to improve many systems which
often instantiate new VMs.

The first step corresponds to the identification of main phases of the VM instantiation
process, as detailed in Chapter 3. This section presents the steps related to the experiment
performed, and depicts the analysis of results obtained using full factorial DoE technique. Based
on the experimental design, we present the measurement scripts and the workload used. Next,
the remaining steps: execution of experiments and analyzes of results are shown.

We can define an experiment as a test or series of tests, which are conducted by re-
searchers in many fields of knowledge in order to discover something about a particular system
or process. Before performing an experiment, it is necessary to identify the metrics, factors and
their variables (levels) that might have a certain influence on behavior. Soon after, choose a
appropriate experimental design technique. In the second step performance evaluation method-
ology we define the metrics, factors and performance evaluation technique for the study of the
instantiation process.

5.1. CASE STUDY ONE 62

First, we identified the metrics of interest from the study of the instantiation process.
Those measures are associated with the relevant phases of the creation of a VM instance (previous
section). We adopted four metrics:

1. Instance reservation time – The time for the CC to reserve the instance;

2. EMI copy time – The time to copy the EMI, EKI, and ERI (shortened here as “copy
time of EMI”) to the instance directory of the NC, from Walrus or cache depending
on the scenario;

3. VM preparation time – The time that the hypervisor takes to prepare and start the
VM;

4. Total time – The total time of instantiation, which is the sum of the previous three
measures.

After the definition of metrics, we carefully chose factors and their levels to assure that
the system will be evaluated in a relevant way (GUIMARÃES; MACIEL; MATIAS JR, 2013;
JAIN, 2008). Table 5.5 shows the factors and their levels.

Table 5.5: Factors and levels of the VM instantiation

Factors Levels

Cache yes, no

VM type m1.large, m3.xlarge, cc1.4xlarge

EMI size (GB) 2, 5, 8

We consider the cache as a factor to be analyzed, since the instantiation time is expected
to be higher when the cache is not used, due to differences between remote copy throughput
(network-bounded) and local copy throughput (hard disk-bounded). Such an issue was also
observed in preliminary tests, confirming the need to carefully analyze this factor.

Another factor considered was the type of VM instance, which is related to the time
of preparation of the VM by the hypervisor, and therefore might have some impact on this
instantiation stage. The choice of three VM types (levels) intends to encompass very different
requirements of CPU, RAM and disk resources. Table 5.6 describes the resources required by
each type of VM analyzed. The type m1.large requires 2 CPU cores, 10 GB of disk space,
and 512 MB of RAM. The type m3.xlarge requires 4 CPU cores, 15 GB of disk space, and
2048 MB of RAM. The type cc1.4xlarge requires 8 CPU cores, 60 GB of disk space, and 3072
MB of RAM. Those VM types were based on the Eucalyptus documentation (EUCALYPTUS,
2014e), which associates the types of VMs in 6 groups: 1) general purposes; 2) computer
optimization, 3) optimization of memory; 4) storage optimization; 5) micro; and 6) graphics
processing. According to our limitation of computational resources, and intended to encompass

5.1. CASE STUDY ONE 63

very different requirements CPU, RAM and disk resources, we opted for select two types from
group 1 (m1.large and m3.xlarge), and one type from the group 2 (cc1.4xlarge).

Table 5.6: Types of VM instances chosen

Type CPU cores Disk (GB) Memory (MB)

m1.large 2 10 512

m3.xlarge 4 15 2048

cc1.4xlarge 8 60 3072

The factor EMI size was chosen because it is associated with the download of EMI from
Walrus to the NC cache, and with the copy to the directory of instances on NC, as explained
previously. The sizes considered in this study are: 2 GB, 5 GB and 8 GB, based on our experience
of most commonly used operating system images and size of installed applications. These values
were also chosen considering that they would not exceed the disk size of the smallest instance
type (m1.large), which is 10 GB.

The factorial experiment has several variations or special cases that depend on the number
of factors and levels of each factor. As seen in Table 5.5, this study has several factors and
more than two levels in one factor. Therefore, adopting the special case Full Factorial Design

(MONTGOMERY, 2012; JAIN, 2008). Although, when evaluating systems that involve many
factors and their levels, the number of experiments increases enough to hinder the evaluation of
the results (JAIN, 2008). Not we chose to perform a Fractional Factorial Design, because in our
case the total time and effort needed to run a Full Factorial Design is not prohibitive and the cost
of analysis not was high.

We adopt a Full Factorial Design to obtain the desired measures and to study the impact
of each factor on those measures. The Full Factorial Design helps in finding the configuration
settings that enhance the system performance, considering various measurement scenarios
(GUIMARÃES; MACIEL; MATIAS JR, 2013; JAIN, 2008). This phase aims at investigating
the effects and relevance of the factors, and also to characterize the times of each instantiation
phase.

The whole this procedure of the DoE, is shown a general way in Figure 5.6. We performed
this procedure by Minitab tool (MINITAB, 2013). First provide the input parameters (factors
and levels). Then we chose the experimental design technique and analysis appropriate, in
we case Full Factorial Design. Finally Minitab generated every eighteen sheet scenarios or
combinations of all levels of the factors. In order to get results in an acceptable confidence
level, we decided to run 50 replicas for each scenario, yielding a total of 900 experiments or
measurements. Considering the three factors, and the levels selected for them, there are eighteen
scenarios to run, which are described in Table 5.7. For the sake of conciseness, in the scenario
column, the cache factor is referenced as Y (working) or N (not working). The VM factor is
denoted as 10 (m1.large), 15 (m3.xlarge), or 60 (cc1.4xlarge), where the numbers represent the

5.1. CASE STUDY ONE 64

size of the disk allocated for that VM type. The EMI size is simply represented by the number of
gigabytes: 2, 5 or 8.

General Full Factorial
Design

EMI size
•2 GB

•5 GB

•8 GB

VM type
•m1.large

•m3.xlarge

•cc1.4xlarge

Cache
•Yes

•No

Scenario 1 of 18
VM: m1.large

Cache: yes
EMI: 2GB

Figure 5.6: Overview of the experimental design for instantiation process.

Table 5.7: Scenarios of the instantiation experiment

Factors Scenarios

Cache Y Y Y Y Y Y Y Y Y N N N N N N N N N

VM 10 10 10 15 15 15 60 60 60 10 10 10 15 15 15 60 60 60

EMI 2 5 8 2 5 8 2 5 8 2 5 8 2 5 8 2 5 8

Another reason to adopt the Full Factorial Design, is that enables see the interactions
effects between factors. Which would not have with a parametric sensitivity analysis varying the
parameters at a time, study also adopted from models.

After choosing all metrics, factors and experimental design technique for the study of
the instantiation process. The next step was the creation of a testbed and selection of workloads
and tools to enable us measuring what we planned so far.

The environment configuration comprises the setup and preliminary verification of the
testbed system that will be used in experiments and measurements. At that stage we remove any

5.1. CASE STUDY ONE 65

sort of external or internal interference that may influence the measurements. Examples of such
actions are: finishing unnecessary processes, disabling operating system automatic updates, and
assuring that the network is isolated from computers not involved.

Figure 5.7 shows the components of our experimental environment. The cloud en-
vironment under test is fully based on the Eucalyptus framework and the KVM hypervisor.
The environment was assembled with two machines of same hardware configuration: Intel(R)
Core(TM) i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3, 500 GB SATA HD. It is important to
highlight that a cluster with many machines is not necessary for the purposes of this study, since
the VM instantiation is a process involving only the front-end and the specific node where the
VM is allocated. Therefore, the usage of only these two machines enabled accurately monitoring
every stage of the instantiation process. One machine is configured as the front-end, running the
CLC, CC, SC, and Walrus. The other machine runs the NC. Both execute the Linux CentOS 6
operating system with ext4 filesystem, and Eucalyptus platform 3.4.0.1. The VMs run the Linux
Ubuntu Server 14.04.01 LTS operating system, with ext4 filesystem. We use a 10/100 Mbps
Ethernet network to connect the PCs through a single switch.

Figure 5.7: Components of the VM instantiation environment

Preliminary tests of VM instantiation were conducted to verify whether the environment
was working as expected, i.e., the requests of VM instantiation were properly executed. The
cache of VM images was populated by the node, etc. To disable the cache in no cache scenarios,

5.1. CASE STUDY ONE 66

first we had to clear the cache. To clean out the cache, we terminated all running instances
on the NC (since the cache is used as part of a copy-on-write clone of the disk image of the
instance) first. Then run the rm -rf command everything in $INSTANCE_PATH/eucalyptus/cache

directory of the NC. After we clear the cache, we had to set the parameter NC_CACHE_SIZE

and NC_WORK_SIZE in the file eucalyptus.conf on the NC. Any value below 10 will disable
caching. The parameters NC_CACHE_SIZE and NC_WORK_SIZE are set by default, which
causes the NC to pick values based on disk space available when NC is first started.

At the end of that phase, we consider the environment is controlled and ready to carry
out the experiments.

We created a software script to instantiate the VMs repeatedly, and collect the times of
each phase of the instantiation, i.e., each chosen metric. The workload cycle was implemented by
means of Shell script language functions (Bash – Bourne-again Shell) that perform the operations
we have just mentioned. The Figure 5.8 represents the workload cycle performed by this script.
In each function is associated with one of the metrics (reserve instance, copy the EMI, and VM
preparation) as it may be seen below:

Instantiate VM
Function

Verify KVM Start
Time Function

Verify VM
Running Function

Terminate VM
Function

Figure 5.8: Workload cycle illustration of the VM instantiation process

� Instantiate VM Function: This function uses euca-run-instances command to
instantiate only one VM at a time. The VM type, the cluster, and the image (EMI) are
passed as parameters to this command. The start and end time of the reserve instance

metric is marked before and after the euca-run-instances command. Soon after, the
duration to reserve instance in CC is stored in a log file. Finally the verify KVM start

5.1. CASE STUDY ONE 67

time function is invoked to check the duration of the copy the EMI metric. The final
time to reserve instance is marked as the start time to copy the EMI by Walrus to NC,
this time is passed as argument to verify KVM start time function. This function is
represented by a Shell script that is shown below:

1 instantiateVm(){

2 beginTimeReserveInstance=$(($(date +%s%N)/1000000))

3 euca-run-instances -t m3.xlarge -z CLUSTER01 -k default emi-4

F4B3CE2

4 endTimeReserveInstance=$(($(date +%s%N)/1000000))

5
6 duration=$(($endTimeReserveInstance-$beginTimeReserveInstance))

7 echo "Duration Reserve Instance by CC: "$duration >> log_times.txt

8
9 verifyKvmStartTime $endTimeReserveInstance

10 }

� Verify KVM Start Time Function: This function is responsible for measuring the
duration of copy the EMI metric. First, checks whether the qemu-kvm process started
in NC through the ps aux command, which is run remotely via ssh command. The
KVM uses qemu-kvm process to prepare and start a VM. When the qemu-kvm process
starts, means that EMI has been copied or downloaded to the NC instances directory.
Therefore, if identified the qemu-kvm process, its start time is marked. Subtracting
the start time of qemu-kvm by the final time to reserve an instance (passed by the
previous function), we have the duration of copy the EMI metric. The duration
of copy the EMI metric is then stored in a log file. Finally the verify VM running

function is invoked to check the duration of the VM preparation metric. The start
time of qemu-kvm process is passed as parameter for the verify VM running function.
This time will be used to calculate the duration of the VM preparation metric. This
function is represented by a Shell script that is shown below:

1 verifyKvmStartTime(){

2 c=FALSE

3 while [$c = FALSE] do

4 filter=‘ssh 192.168.0.5 ps aux | grep /usr/libexec/qemu-kvm | wc

-l‘

5 if [$filter -eq 1] then

6 beginTimeKvm=$(($(date +%s%N)/1000000))

7 duration=$(($beginTimeKvm-$endTimeReserveInstance))

8 echo "Duration Copy the EMI to NC: "$duration >> log_times.

txt

9 c=TRUE

10 fi

5.1. CASE STUDY ONE 68

11 done

12
13 verifyVmRunning $beginTimeKvm

14 }

� Verify VM Running Function: This function checks the time it takes the KVM
to prepare and start a VM, i.e., VM preparation metric. The algorithm performs
numerous times the euca-describe-instances command, in order to verify a VM with
the running status. If a VM is identified with the running status, this time is marked.
The duration of the VM preparation metric is calculated by subtracting the start
time of the running status, by the start time of the qemu-kvm process (passed by the
previous function). finally, the terminate VMs function é invoked. This function is
represented by a Shell script that is shown below:

1 verifyVmRunning(){

2 booting=TRUE

3 while [$booting = TRUE]

4 do

5 running=‘euca-describe-instances | grep running | wc -l‘

6 if [$running -gt 0]

7 then

8 beginTimeVmRunning=$(($(date +%s%N)/1000000))

9 duration=$(($beginTimeVmRunning-$beginTimeKvm))

10 echo "Duration VM Preparation by KVM: "$duration >> log_times.

txt

11 booting=FALSE

12 fi

13 done

14
15 killVM

16 }

� Terminate VMs Function: This function uses euca-describe-instances command
to find out which instances are running in the cloud and terminate them all with
euca-terminate-instances command. This function is represented by a Shell script
that is shown below:

1 killVM(){

2 instances=‘euca-describe-instances | grep INSTANCE | awk ’{print

$2}’‘

3 euca-terminate-instances $instances

4 }

5.1. CASE STUDY ONE 69

It is important to highlight that the workload was one VM at a time, i.e., no concurrent
VM instantiations were done. After the creation and execution of an instance was completed, the
VM was terminated, and the script waited a fixed amount of time to request a new instantiation.
For each scenario this cycle was repeated 50 times, according to the experimental design (see
previously section). The time interval required between a cycle and another, depends on the time
taken to terminate all the VMs with running status. The complete script can be seen in Appendix
B.

The experiment was performed in November 2013. According to the design adopted, we
have 2 levels of cache factor, 3 levels of VM type factor, and 3 levels of EMI size factor, leading
to 18 scenarios or combinations. In order to get results in an acceptable confidence level, we
decided to run 50 replicas for each scenario, yielding a total of 900 experiments. This amount of
experiments might be considered large, but most of the actions (e.g., workload generation, and
data collection) are automatically executed, so reducing the required effort and time for running
the experiments.

Table 5.8 provides the average time in milliseconds measured for each phase of the
instantiation process – instance reservation, copy of the EMI, and VM preparation by the
hypervisor – and also the total time. The standard deviation and coefficient of variation for the
total time is also presented.

Table 5.8: Results of each scenario of the experiment

Scenario (Cache VM EMI) Instance Reserved (ms) EMI Copied (ms) VM Prepared (ms) Total (ms) Std. Deviation Coef. of Variation

Y 10 2 280 7624 10603 18506 10002 0.5405

Y 10 5 279 7152 11416 18848 10020 0.5316

Y 10 8 271 7251 10216 17739 9844 0.5549

Y 15 2 306 7221 13266 20793 10107 0.4861

Y 15 5 306 7257 13235 20797 10085 0.4849

Y 15 8 318 7543 14115 21976 9874 0.4493

Y 60 2 329 7169 22120 29618 118 0.004

Y 60 5 314 7329 16764 24407 8918 0.3654

Y 60 8 307 7297 14813 22417 9736 0.4343

N 10 2 342 194790 14538 209670 118 0.0006

N 10 5 359 472928 16253 489540 1667 0.1026

N 10 8 357 750593 14182 765132 8326 0.0109

N 15 2 390 196716 12546 209651 109 0.0005

N 15 5 354 472524 16635 489513 85.5 0.0002

N 15 8 363 753203 13958 767525 7282 0.0095

N 60 2 405 206374 14017 220796 9996 0.0453

N 60 5 401 487273 13273 500947 9830 0.0196

N 60 8 409 767982 13949 782340 7477 0.536

Observing Table 5.8, it shall be noticed that the total time to instantiate a VM is at least 10
times higher when the cache is not used, comparing to the scenarios which use the instance cache.
Such a difference indicates that this factor is of utmost importance for the system performance.
Focusing in the scenarios when the cache is used (denoted by Y), those ones with VM type 10
are the three best configurations, but their standard deviations indicate that the difference with
respect to VM types 15 and 60 might not be significant. For the scenarios without cache, the

5.1. CASE STUDY ONE 70

EMI size plays an important role, since the instantiation time increases more than 100 % when
the size increases from 2 GB to 5 GB, or more than 50 % when the size increases from 5 GB to
8 GB, while the other factors are kept unchanged.

These results and analyses are not intended to point out the best scenario ever, since such
a conclusion might depend upon other specific conditions and requirements of the system being
used. Anyway, those results are helpful to guide a cloud administrator in adjusting the parameters
of his system while being aware of possible impacts on performance of applications, mainly
when using mechanisms such as auto scaling. Additional analyses of the effect and relevance of
each factor are presented.

The effect and relevance of each factor and their interactions were computed based on
results of total instantiation time shown in Table 5.8. Table 5.9, Figure 5.9, and Figure 5.10
show the results of these analyses just for total instantiation time. The evaluation for the times of
isolated instantiation phases (i.e., instance reservation, EMI copy, and VM preparation) is not
presented here for the sake of conciseness.

Table 5.9: Estimated effects and relevances for the total time of instantiation

Factors Effects T Relevances P-value

Constant 603.09 0.000

A 472415 551.55 45.0720 % 0.000

B 11031 12.88 1.0525 % 0.000

C 277260 323.71 26.4532 % 0.000

AB 3136 3.66 0.2991 % 0.000

AC 281244 328.36 26.8332 % 0.000

BC -88 -0.1 -0.0082 % 0.918

ABC 3129 3.65 0.2983 % 0.000

In Table 5.9, Figure 5.9, and Figure 5.10, each factor corresponds to a letter: Cache
= A, VM type = B, and EMI size = C. The results showed that the factors that most impact
on performance are A (cache), generating a performance effect with relevance of 45.072 %,
followed by C (EMI size) with 26.453 %, and the interaction AC with around 26.833 %. The
factor B (VM type) with 1.052 % and its interactions (AB, BC, and ABC) obtained no significant
relevance, where AB obtained around 0.299 %, BC with -0.008 %, and ABC with 0.298 %.
Note also that the p-value of interaction BC was 0.918, being above 0.05 (set as the threshold
in this study), i.e., there is not enough evidence that this interaction has significant effect on
performance improvement (JAIN, 2008).

Figure 5.9 depicts in two distinct views the statistical significance of main and interactions
factors. The T-value or T statistic is computed from the coefficients of the regression model
shown in Table 5.9, which in turn is used to compute the P-value, both serve to examine the
effect or statistic relevance of factors (JAIN, 2008).

5.1. CASE STUDY ONE 71

6005004003002001000

99

95

90

80
70
60
50
40
30
20

10

5

1

T-value

P
e

rc
e

n
t A cache

B vm

C emi

Factor Name

Not Significant

Significant

Effect Type

ABC

AC

AB

C

B

A

BC

ABC

AB

B

C

AC

A

6005004003002001000

T
e

rm

T-value

2,0

A cache

B vm

C emi

Factor Name

(a) Normal plot of the standardized effects

6005004003002001000

99

95

90

80
70
60
50
40
30
20

10

5

1

T-value

P
e

rc
e

n
t A cache

B vm

C emi

Factor Name

Not Significant

Significant

Effect Type

ABC

AC

AB

C

B

A

BC

ABC

AB

B

C

AC

A

6005004003002001000

T
e

rm

T-value

2,0

A cache

B vm

C emi

Factor Name

(b) Pareto chart of the standardized effects

Figure 5.9: Charts for statistical significance of effects for main factors and interactions

The Normal plot of the standardized effects (Figure 5.9 (a)), focuses on highlighting
the percentage of statistical significance relative to T-value. The closer to the right the point is
plotted, more significant is the corresponding factor. For instance, the factor A with T-value =
551.55 has 90 % of statistical significance, whereas the interaction BC presents a T-value =−0.1
with 10 % of significance. Factors with T-values located before the blue vertical line can be
dropped from future analyzes because they do not have statistical significance, thus, these factors
are not highlighted in the plot. The interaction BC is shown as a black dot, suggesting its lack of
significance. In the Pareto chart of standardized effects (Figure 5.9 (b)), the analysis presents
another aspect, all factors are shown, and statistical effect (T-value) of each one is depicted in
a bar plot. Similar to Figure 5.9 (a), this plot has a red vertical line. The factors with T-value
located before such a line has no significant statistical effects. In other words, it is assumed
hypothetically that all the statistical results of these factors do not represent reality (JAIN, 2008).

5.1. CASE STUDY ONE 72

800000

400000

0

852

601510

800000

400000

0

yesno

800000

400000

0

cache

vm

emi

no

yes

cache

10

15

60

vm

2

5

8

emi

yesno

480000

360000

240000

120000

0
601510

852

480000

360000

240000

120000

0

cache

M
e

a
n

vm

emi

(a) Main effects plot

800000

400000

0

852

601510

800000

400000

0

yesno

800000

400000

0

cache

vm

emi

no

yes

cache

10

15

60

vm

2

5

8

emi

(b) Interaction effects plot

Figure 5.10: Charts for main and interactions effects of factors

Figure 5.9 (b) shows the interaction BC with T-value less than 0 (before the line). We
conclude from both views that the factors A, C, and AC have much more significant effects than
the other factors.

The main effects plot, Figure 5.10 (a), shows the isolated factors and the effects of their
distinct levels. Since the difference between levels is significant, this highlights the cache and
EMI size as high impacting factors, as denoted by both slopes. On the other hand, the VM type
isolated has a much smaller effect, denoted by the almost horizontal line. Figure 5.10 (b) shows
a evaluation of the effects of factors interacting with each other. The interaction that has no
parallel lines suggests a significant impact on the measure of interest, i.e., the total instantiation
time. This is the case of the upper right and the lower left cells in the grid, which represent the
interaction between cache and EMI size factors. Both plots show that when the cache is not used,

5.2. CASE STUDY TWO 73

the effect of varying EMI size is significant, but when the cache is working, the different levels
of EMI cause negligible impact on the instantiation time. Therefore, the employment of network
equipment and configuration to provide high bandwidth and throughput is especially valuable in
no-cache scenarios. Moreover, efforts such as the customization of EMIs for using small disk
space, or compressing the EMI for transmission through the network might be considered worthy
in environments which do not use cache, but likely not when the EMI can already be in the cache
of all nodes. However, a specific study is needed to evaluate the viability of EMI compression
strategy, due to computational costs for compression and decompression.

It is also important to stress that all interactions with the factor VM type have parallel
lines on Figure 5.10 (b), confirming the analysis shown on the other plots, i.e., are interactions
without major influence on results.

5.2 Case Study Two

In this section, we used the SPN main model depicted in Figure 4.2 to evaluate the
performance of a composite web service. We verified the effects of various adjustments in the
main transitions’ delays, obtaining measures such as mean queue size, average number of busy
VMs, average utilization of VMs, and mean response time to the user. One specific study varied
the rates of the mashup CTMC submodel, and verified the impact on a given metric of the SPN
main model. A similar study was also carried out with the VM instantiation CTMC submodel.

The delays assigned to all timed transitions is presented in Table 5.10. The values for
delays of TReq, TLB, TSend, and TRep were obtained in a Eucalyptus private cloud testbed,
using default configuration parameters for the Eucalyptus CloudWatch (EUCALYPTUS, 2014d).
The Apache JMeter benchmark (JMETER, 2015) was used in these tests. The Eucalyptus
CloudWatch has a feature that provides the times of the ELB service (TLB) (EUCALYPTUS,
2014d). For TReq, the rate between requests arrivals was chosen according to the type of system
evaluated, in this case event recommendation mashup web service. Therefore, the value of TReq
was configured in JMeter benchmark. The network delay for sending the request and receiving
the response was monitored to assign to the transitions TSend, and TRep, respectively.

The value for TService delay comes from CTMC submodel, which represents the event
recommendation mashup. Table 5.11 presents the values assigned to parameters of the mashup
application submodel. The mean response time of each specific web service provider was
obtained through measurements on a real mashup application, calling specific web services
provided by Foursquare (FOURSQUARE, 2015), Google Maps (GOOGLE, 2015), Last.fm
(LAST.FM, 2015), and Eventful (EVENTFUL, 2015). Matos et al. (MATOS; MACIEL; SILVA,
2013) validated this submodel and provided some results of each specific web service provider
this experimental study.

The values for TCollectMetrics and TWindow depend on the configuration performed
by the system administrator (EUCALYPTUS, 2014d,f), in this study, we adopted 60 seconds for

5.2. CASE STUDY TWO 74

Table 5.10: Timed transitions of the SPN model for scalable web service on private cloud

Transition Description Value (s)
TColletMetrics Time period for metrics collection on the nodes 60.0

TWindow Time window for CloudWatch 60.0
TCheckThreshold Time for summarizing, computing and compare metrics 1.0

TInst Time for instantiation of a new VM 37.2
TReq Time between user requests 4.0
TSend Network latency to send request 0.2
TLB Time for Load Balancer forward request 1.0

TService Response time of mashup 6.9
TRep Network latency to send response 0.2

Table 5.11: Parameter values for the mashup CTMC model

Parameter Description Value (s)
mrtES Mean resp. time of Event Search 2.333
mrtV S Mean resp. time of Venue Search 0.324
mrtSA Mean resp. time of Similar Artists 2.286
mrtT S Mean resp. time of Top Event Selection 0.226
mrtMS Mean resp. time of Map Search 0.452
mrtSS Mean resp. time of Song Search 1.909

these two deterministic transitions. Such a configuration yielded the best results in an experimen-
tal evaluation that is presented in case study one (Section 5.1). The value of TCheckThreshold
is 1 second, because when the time window closes, Eucalyptus CloudWatch takes around 1
second to summarize, computing and compare the metrics with the predefined thresholds, to
then trigger an action (add or remove an instance) (EUCALYPTUS, 2014f).

TInst delay comes from CTMC submodel which represents the VM instantiation, an-
alyzed further. The values of this submodel were validated using results from the Eucalyptus
private cloud testbed also presented in case study one.

The SPN main model was solved through stationary simulation, obtaining measures
such as mean queue size, average number of busy VMs, average utilization of VMs, and mean
response time to the user. Table 5.12 presents these results. The simulation was executed
for a confidence level of 95%, maximum relative error of 5%, warm-up period of 50 runs,
run size (i.e.: number of times each transition fires) of 1000, and maximum simulation time
of 120 seconds. The CTMC submodels (VM instantiation and mashup service) were solved
through stationary analysis, providing the values to be assigned as delays of TInst and TService
transitions respectively. The Mercury tool was used for these analyses (SILVA et al., 2013;
CALLOU et al., 2013).

Table 5.12 presents the performance measures computed considering the baseline con-
figuration of parameters values shown in Table 5.10. The average utilization of VMs is around
38.3%, what shows that the system has enough capacity to serve user requests with the allocated

5.2. CASE STUDY TWO 75

Table 5.12: Performance measures

Measure Expression Value
Utilization of VMs (%) E{#BusyVMs})/(E{#IdleVMs}+E{#BusyVMs}) 38.3 %

Average number of busy VMs E{#BusyVMs} 1.716
Average number of idle VMs E{#IdleVMs} 2.773
LB queue size (#of requests) E{#Queue} 0.432

Mean response time - Rsp - (s) NRequests/(P{#PReply>0}×(1/TReply)) 9.029 s

resources. Such a capacity is partially provided by means of additional VMs created by the auto
scaling mechanism. This is confirmed by the sum of average number of busy VMs and average
number of idle VMs, that is equal to approximately 4.48, whereas the system starts with only
two VMs. If the auto scaling mechanism were not working –and we had only two VMs– the
average utilization could reach about 85%, incurring in risks of bad performance for the users,
mainly during high workload bursts. The average load balancer queue size is another measure
that shows the system is not overloaded, since the requests do not wait in the queue for being
distributed to the VMs.

The mean response time of the system (Rsp) is 9.029 seconds. This is the round-trip time
interval elapsed from the dispatch of user request to response arrival. The measure expression on
the SPN is Rsp=NRequests/(P{#PReply> 0}×(1/T Reply)), where NRequests is the average
number of requests in the system. NRequests is computed through the expression (E{#PSend}+
E{#JobAdmission}+E{#Queue}+E{#BusyV Ms}+E{#PReply}), which sums up the number
of tokens in the corresponding places. By summing up the response time of the mashup
application, the request and reply network delays, and the time for load balancer distribution,
the result is close to the system response time (9.029 s), indicating that requests spend little
time in queue. Even then, the mean response time of this system might be shortened by tuning
some of its many parameters and components. In order to identify the most effective points
for a response time improvement, it is important to assess the measure sensitivity to models’
parameters. Therefore, we varied the total time of the submodels (varying the rates of one
parameter at a time), and we checked the level of impact on the response time of the SPN main
model.

We present a comparison of impact among some parameters through scatter plots. Fig-
ure 5.11 depicts the impact of parameters mrtES, mrtSA, and mrtSS (from the CTMC mashup
submodel) on system response time, computed from the SPN main model. We grouped these
parameters on Figure 5.11 because they belong to the same submodel. The plot is generated
by fixing all parameters at their baseline values (see Tables 2.4, 5.14, and 5.11), except by one
parameter that is varied through a specific range in steps of about 10%, enabling the comparison
of impact on the system response time. Notice that the slopes of mrtES, mrtSA, and mrtSS are
similar.

Figure 5.12 presents the impact of parameters TLB, TSend, and TRep, which belong to
the SPN main model. TLB shows a slightly higher impact on system response time than TRep

5.2. CASE STUDY TWO 76

and TSend do. Note that this analysis is related to the slope of the line (average variance), and
not the absolute values of the y axis.

Rs
p

(s
)

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Parameter value (s)
1.4 1.6 1.8 2 2.2 2.4 2.6

mrtES
mrtSA
mrtSS

Figure 5.11: Impact of mrtES, mrtSA, and mrtSS on system response time

Rs
p

(s
)

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Parameter value (s)
0 0.2 0.4 0.6 0.8 1

TLB
TSend
TRep

Figure 5.12: Impact of TLB, TSend, and TRep on system response time

Figure 5.13 depicts the impact of parameter pCache on system response time, computed
from the SPN main model. This is one parameter from the VM instantiation submodel. This
relatively lower impact of pCache is noteworthy by comparing Figure 5.11 and Figure 5.12 to
Figure 5.13. It is worth highlighting that even varying pCache with steps larger than 10%, its
effect on system response time is limited to about 0.1 second throughout the plot, whereas in
Figure 5.11 the impact reaches around 0.8 seconds. On the other hand, pCache may be one of
the parameters most easily tunable in the system, if compared to specific services response times

5.3. CASE STUDY THREE 77

(mrtES, mrtSA, and mrtSS) or parameters related to network latency (TSend, TRep). Even so, in
specific studies on the VM instantiation submodel (Section 5.3) have shown that pCache has
a higher sensitivity index than many other parameters, and therefore deserves attention from
system administrators. This is one reason for the heterogeneous hierarchical modeling, being
able to analyze the system-wide behavior without losing details of specific subsystems processes.

Notice that we kept the range of Y-axis (system response time) the same for all plots
(Figure 5.11, Figure 5.12, and Figure 5.13), so we can compare the slopes of lines from distinct
graphs. Systems administrators can benefit of this approach, that may guide investments and
help decision making on which are the high priority components during tune-up and upgrade
efforts.

Rs
p

(s
)

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Parameter value
0 0.2 0.4 0.6 0.8 1

pCache

Figure 5.13: Impact of pCache on system response time

5.3 Case Study Three

This section presents the results obtained from refined VM instantiation CTMC submodel
shown in Figure 4.5. The main objective is verifying the behavior of the VM instantiation time
for distinct levels of the parameter pCache. Therefore, we carried out a performance evaluation
and sensitivity analysis in pCache parameter. Sensitivity analysis from design of experiment
(presented in Section 5.1) shows that cache is the most impacting factor for the total instantiation
time. For this reason, we decided to analyze specifically the pCache parameter.

Table 5.13 presents description of parameters and their values, which were obtained from
testbed experiments and used to verify the results provided by the CTMC submodel. The times
obtained from the measurement of experimental activity is presented in the case study one. In
(CAMPOS ELIOMAR; MATOS; SILVA, 2015a) this study is also presented.

5.3. CASE STUDY THREE 78

Table 5.13: Parameter values for the CTMC submodel of VM instantiation

Parameter Description Value
pCache Probability that EMI is already in cache 1 (100%)

tRI Mean instance reservation time 0.28 s
tCI Mean EMI local copy time 7.624 s
tDI Mean EMI download time 194.79 s
tPV Mean VM preparation time 10.603 s

The parameter values tRI, tCI, and tPV are based on the time shown in Table 5.8 (case
study four) for the first scenario (Y 10 2): using node’s cache, VM with 10 GB disk, 2 GB
sized EMI. The value for tDI was obtained in a scenario N 10 2 similar to the previous one, but
with disabled cache. The pCache was initially set to 1 to allow comparison of results provided
by the submodel with those from experiments with cache enabled. This is an aspect which
might deserve characterization in an infrastructure with multiple nodes, and multiple EMIs to
instantiate. Even when the cache is enabled, some nodes may not always have the required EMI
available in its cache, due to disk space restrictions or simply lack of a previous instantiation.

The Mean Time to Absorption (MTTA) (KOHLAS, 1986), i.e., the mean instantiation
time computed from the CTMC with those parameters, is 18.507 s. The time obtained in the
experiments is 18.506 s with confidence interval of (15.663 s; 21.349 s) for a confidence level
of 95 %, as seen in Table 5.8. When we change the parameters in the CTMC to match the
configuration of scenario N 10 2 (absence of cache), the computed MTTA is 209.670 s, the
same value measured for the total instantiation time in the corresponding experiment scenario,
whose confidence interval is (209.636 s; 209.703 s) for a confidence level of 95 %. Therefore,
our submodel provides consistent results to those observed in the experimental testbed, i.e., we
verify the equivalence between the submodels and the experiment.

After having the submodel validated, we go further by using the instantiation CTMC
submodel to apply statistical analyses. We have performed parametric sensitivity analyses, in
order to predict the impact on time of the instantiation process while the rate of a specific factor
varies throughout a given range. For instance, we have carried out a specific research study in
which we have checked the performance of the instantiation time to various pCache values.

Figure 5.14 depicts the sensitivity analysis (MATOS et al., 2012) of instantiation time
with respect to pCache, for three levels of EMI size (2 GB, 5 GB, and 8 GB). The plot shows
a linear relationship between pCache and the instantiation time, which can be explored for
example by system administrators searching for a compromise between system performance
and efforts to pre-load EMIs in the cache of cloud nodes. For example, assuming that a given
application requires an average instantiation time smaller than 300 seconds, from Figure 5.14 we
find out that such a requirement is achievable for a 2 GB EMI even without enabling cache, but
for 5 GB EMI and 8 GB EMI, the probability of using cache shall be higher than 40 %, and 60
%, respectively.

We mentioned earlier in case study one, that the Figure 5.13 depicts the impact of

5.4. CASE STUDY FOUR 79

parameter pCache on system response time of the SPN main model. Where pCache have
relatively lower impact comparing with Figure 5.11 and Figure 5.12. However, now we see
that when analyzing the parameter pCache comparing or interacting to specific parameters of
the instantiation process, such as EMI, pCache has a higher sensitivity index than many other
parameters, and therefore deserves attention from system administrators.

In
st

an
ti

at
io

n
ti

m
e

(s
)

0

100

200

300

400

500

600

700

800

pCache
0 0.2 0.4 0.6 0.8 1

EMI 2GB
EMI 5GB
EMI 8GB

Figure 5.14: Sensitivity analysis of instantiation time with respect to pCache

It is worth stressing that the VM instantiation CTMC submodel presented in this work
can be extended and used for other analyses not shown here. This CTMC also allows com-
position with other models to evaluate higher level applications which make intensive use of
VM instantiations, what is demonstrated by the hierarchical composition with the SPN model
described in Chapter 4.

5.4 Case Study Four

The next step in our performance evaluation study is using the refined auto scaling CTMC
model shown in Figure 4.7 (c). We carried out a performance evaluation and sensitivity analysis
in all parameters of the auto scaling process. As explained in Chapter 4, this CTMC model
represents the whole auto scaling process, i.e., starts by monitoring the workload arrival, and
finishes with VM instantiation (when the incoming workload violates a predefined threshold).
Therefore, VM instantiation is the final step of the auto scaling process.

Table 5.14 presents description of parameters and their values, which were obtained from
testbed experiments and used to verify the results provided by the CTMC model. The detailed
times obtained from the measurement of experimental activity are presented in Section 5.1 in
(CAMPOS ELIOMAR; MATOS; SILVA, 2015a,b).

5.4. CASE STUDY FOUR 80

Table 5.14: Parameter values for the CTMC model of auto scaling process

Parameter Description Value
tAS Mean auto scaling monitoring time 188.6 s

pCache Probability that EMI is already in cache 1 (100%)
tRI Mean instance reservation time 0.28 s
tCI Mean EMI local copy time 7.624 s
tDI Mean EMI download time 194.79 s
tPV Mean VM preparation time 10.603 s

The value of parameter tAS is based on the time shown in Table 5.3 (Section 5.1) for the
first scenario (1 1 1): with collection period of 1 minute, dimension of 1 VM, and 1 minute of
window time. The dimension corresponds to the amount of VMs monitored. The factor window

time is related to the period taken to observe a metric. The factor collection period is associated
with the time interval for CloudWatch collecting information from all NCs repositories.

The parameter values tRI, tCI, and tPV are based on the time shown in Table 5.8
(Section 5.1) (CAMPOS ELIOMAR; MATOS; SILVA, 2015a) for the first scenario (Y 10 2):
using node’s cache, VM with 10 GB disk, 2 GB sized EMI. The value for tDI was obtained
in a scenario N 10 2 that is similar to the previous one, but with disabled cache. The pCache

was initially set to 1 to allow comparison of results provided by the submodel with those values
experiments with cache enabled. Note that the values of these parameters are the same used in
the previously case study.

The MTTA (KOHLAS, 1986) of the CTMC is the mean time of auto scaling monitoring
followed by VM instantiation process. The value of MTTA with those input parameters is
207.107 s. It is exactly the same result from the experiments, if we sum up the values from
Table 5.3 without the parameter tDI. Changing parameters in CTMC to match the scenario
without cache, the MTTA is 394.273 s, exactly the same result if summing up the values in
Table 5.3 without the parameter tCI. Therefore, our submodel provides consistent results with
the experimental data. The Mercury tool was used for the creation and analysis of all models of
this work (SILVA et al., 2013; CALLOU et al., 2013).

The next step in our performance evaluation study is to use the CTMC submodel for
further analysis. We computed the probabilities of absorption. Such value means the probability
of finalizing the auto scaling monitoring and instantiation process by a given time t. These
probabilities were calculated from t = 0 s until t = 2000 s, and plotted as cumulative distribution
function as shown in Figure 5.15.

In Figure 5.15 (a), we consider the scenario (1 1 1) presented in Table 5.3, where tAS =
186.6 s. When cache is enabled on nodes, with pCache = 1 for example, the 100 % probability
completing the auto scaling monitoring and VM instantiation process is achieved around 500 s.
But when cache is not enabled on nodes, with pCache = 0 for example, the 100 % probability is
achieved around 800 s.

In Figure 5.15 (b), we consider the scenario (5 1 1) (i.e., now with collection period

5.4. CASE STUDY FOUR 81

of 5 minutes) presented in Table 5.3, where tAS = 788.6 s. When cache is enabled, the 100 %
absorption probability is achieved around 1900 s. But when cache is not enabled, the 100 %
probability is achieved around 2000 s.

P
ro

b
ab

il
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)
0 400 800 1200 1600 2000

400 800 1200 1600 2000

pCache = 1
pCache = 0

(a) Probabilities for the scenario (1 1 1): collection period = 1, di-
mension = 1, and window time = 1

P
ro

b
ab

il
it

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)
0 400 800 1200 1600 2000

400 800 1200 1600 2000

pCache = 1
pCache = 0

(b) Probabilities for the scenario (5 1 1): collection period = 5, di-
mension = 1, and window time = 1

Figure 5.15: Graphs of absorption probabilities of the auto scaling process.

Therefore there is a significant impact on system performance when collection period

factor is modified from 1 minute to 5 minutes (in this case, considering the dimension of 1 VM
and the window time of 1 minute as fixed levels). This is demonstrated by the difference between
two scenarios was at least 1400 s when pCache = 1, and at least 1200 s when pCache = 0. We
can also notice that parameter pCache modified considerably the time to complete the process,
especially for scenario (1 1 1), increasing 300 s when cache was not enabled.

Next, we examined the behavior of the MTTA (KOHLAS, 1986), i.e., the mean time

5.4. CASE STUDY FOUR 82

to complete the auto scaling monitoring followed by VM instantiation, for different values
of tAS, tRI, tCI, tDI, and tPV. This sensitivity analysis can allow system administrators to
better prioritize efforts to reduce time of each phase. Figure 5.16 shows the variation of MTTA
with respect to tAS, tRI, tCI, tDI, and tPV, considering three levels of pCache (0.25, 0.5, and
0.75). The graphs show a linear relationship between each of those factors and MTTA, which is
expected because they are stages of a sequential process. For such an analysis, values found in
Table 5.14 were used as the baseline configuration. We varied one parameter at a time, keeping
values of other parameters unchanged.

In Figure 5.16 (a), the parameter tAS varied around its average in a range from 150 s to
240 s with steps of 10 s. In this graph we confirm that variations on parameter tAS have a large
effect on MTTA, for all levels of pCache.

In Figure 5.16 (b), we varied tRI around its average in a range from 0.1 s to 1 s with
intervals of 0.1 s. Since the instance reservation time was quite small, we noticed that decreasing
it would have little effect on MTTA, for all pCache levels.

In Figure 5.16 (c), we varied the parameter tCI around its average in a range from 5 s to
14 s with intervals of 1 s. Please notice that MTTA was slightly affected by the time of copying
the EMI locally on node. We can particularly emphasize that changes in tCI had an almost
negligible impact on MTTA for pCache = 0.25 and pCache = 0.5, while this impact was larger
for pCache = 0.75.

In Figure 5.16 (d), we varied parameter tDI around its average in a range from 150 s to
240 s with steps of 10 s. Importantly, the range here was similar to the range adopted for tAS, and
larger than for other parameters because we adopted steps based on percentage values around
the average of each parameter. Figure 5.16 (d) shows that by varying tDI, the instantiation time
changed very significantly for all pCache levels. Moreover, the smaller the value of pCache was,
the greater was the impact of tDI in MTTA. Therefore, efforts to decrease tDI produced more
benefits when there was a low probability of finding the VM image in node’s cache.

Finally, in Figure 5.16 (e), we varied parameter tPV around its average in a range from
5 s to 14 s with intervals of 1 s. The graph shows that the variation of tPV lightly impacted on
MTTA, and the level of this impact was almost the same for all pCache levels, something which
was expected, since the VM configuration occurs only after copying or downloading the EMI.

5.4. CASE STUDY FOUR 83

A
ut

o
 s

ca
li

ng
 t

im
e

(s
)

200

220

240

260

280

300

320

340

360

380

400

t_AS
150 160 170 180 190 200 210 220 230 240

150 160 170 180 190 200 210 220 230 240

pCache = 0.25
pCache = 0.5
pCache = 0.75

(a) Variation of tAS (auto scaling monitoring time)

A
ut

o
 s

ca
li

ng
 t

im
e

(s
)

200

220

240

260

280

300

320

340

360

380

400

t_RI
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pCache = 0.25
pCache = 0.5
pCache = 0.75

(b) Variation of tRI (instance reservation time)

A
ut

o
 s

ca
li

ng
 t

im
e

(s
)

200

220

240

260

280

300

320

340

360

380

400

t_CI
5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 14

pCache = 0.25
pCache = 0.5
pCache = 0.75

(c) Variation of tCI (EMI local copy time)

A
ut

o
 s

ca
li

ng
 t

im
e

(s
)

200

220

240

260

280

300

320

340

360

380

400

t_DI
150 160 170 180 190 200 210 220 230 240

150 160 170 180 190 200 210 220 230 240

pCache = 0.25
pCache = 0.5
pCache = 0.75

(d) Variation of tDI (EMI download time)

A
ut

o
 s

ca
li

ng
 t

im
e

(s
)

200

220

240

260

280

300

320

340

360

380

400

t_PV
5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 14

pCache = 0.25
pCache = 0.5
pCache = 0.75

(e) Variation of tPV (VM preparation time)

Figure 5.16: Sensitivity analysis of auto scaling process with respect to parameters tAS,
tRI, tCI, tDI, and tPV

848484

6
Conclusion

This study investigated the performance of a composite web service (event recommenda-
tion mashup), running on a private cloud infrastructure with auto scaling mechanisms.

A General Full Factorial Design of Experiments was performed for the auto scaling mon-
itoring. The effect and relevance in three factors were analyzed – collection period, dimension,
and window time – considering as target metric the total time of auto scaling monitoring process.
The experimental results showed that the most influential factors were: collection period, the
window time, and the interaction between these two factors. The collection period of 1 minute
caused a significant decrease in mean time for auto scaling monitoring. The size of window time

also had a great effect, especially when the collection period was 1 minute.
A Full Factorial Design of Experiments was performed for the VM instantiation process.

We analyzed the effects and relevance of three factors – cache, VM type, and EMI size –
considering the total time of instantiation. The times for completion of intermediate phases of
the instantiation were also measured and analyzed. The experimental results pointed out that
the most influencing factors are the cache and EMI size, including the interaction between these
factors. The use of cache causes a significant decrease in the instantiation time. The size of
EMI also has a large effect, mainly when the cache is not used. The presented analysis lead
to the suggestion of some good practices for cloud infrastructures administrators. Due to the
high impact of EMI size, the customization of virtual machine images to produce small EMIs is
recommended, as well as the employment of network equipment and configuration to provide
high bandwidth and throughput. Preloading EMIs on a fraction of the available nodes might also
improve significantly the instantiation time, since it may increase the probability of using the
cache.

The hierarchical heterogeneous modeling approach enabled an analysis that included the
main high-level components as well as details of the auto scaling monitoring, VM instantiation
process and each specific web service call within the mashup application.

Through the SPN main model, metrics such as average VMs utilization, number of idle
VMs, and length of load balancer queue demonstrated that the system is balanced, but partially
due to the usage of VMs created by the auto scaling mechanism. The system response time,

6.1. STATEMENT OF THE CONTRIBUTIONS 85

from end user perspective, confirms that the system is able to process requests without adding
excessive delay due to queuing mechanisms. Moreover, a sensitivity analysis technique tailored
for hierarchical models indicated effective points to be tuned in this system in order to achieve
even better performance. The most influential factors for the system are the response time of
Event Search and Similar Artists services (parameters of the mashup CTMC submodel), as well
as the Load Balancer of the private cloud. Considering the system setup (e.g.: workload and
VMs capacity) evaluated here, the time to instantiate VMs –and its inner variables – is not among
the parameters that have a big impact on overall performance.

This study investigated the auto scaling process, an important activity in cloud computing
systems, and intensively used by web services that deal with unexpected request peaks. For
this reason, was develop a CTMC model that represents the auto scaling process from threshold
violation until to complete instantiation of a new VM. The analysis presented are helpful for
cloud infrastructure administrators, that can properly tune parameters such as the collection

period, as well as give especial attention to the benefits of populating the cache of VM images
on nodes, and keeping VM images as small as possible to avoid long EMI download times. The
approach for sensitivity analysis presented here contributes with guides to prioritize efforts and
might be applied in similar models of cloud computing infrastructures and their applications.

6.1 Statement of the Contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

� Approach of a performance evaluation methodology of a main system and its subsys-
tems. This methodology makes use of hierarchical modeling and experimental design.
This approach enables to represent details of specific processes using parametric
sensitivity analysis;

� Proposal of a SPN main model to represent the functioning of a composite web
service with elasticity mechanisms in a private cloud platform, in order to apply
parametric sensitivity analysis;

� Proposal of a CTMC submodel to represent the functioning of event recommendation
mashup, in order to apply parametric sensitivity analysis;

� Proposal of a CTMC submodel to represent the functioning of the VM instantiation
in a private cloud platform, in order to apply parametric sensitivity analysis.

� Proposal of a CTMC model to represent the functioning of the all auto scaling process
in a private cloud platform, in order to apply parametric sensitivity analysis. The auto
scaling CTMC model presented in this work can be extended and combined with

6.2. FUTURE WORKS 86

other models, in order to assess the higher-level applications that might benefit from
intensive usage of auto scaling mechanism and VM instantiation;

� Performance evaluation of a General Full Factorial Design Experiment of the auto
scaling monitoring, which aims to analyze the impact of different factors on subsys-
tem performance;

� Performance evaluation of a Full Factorial Design Experiment of the VM instantiation
process;

� Assist system administrators to properly configure the auto scaling mechanism in
private clouds frameworks. Such results can also aid in the development of techniques
or algorithms to improve performance of auto scaling functions in private clouds
frameworks from the Scripts used on testbeds this work.

In addition to the contribution mentioned, some papers presenting the findings of this
dissertation were produced:

� Eliomar Campos, Rubens Matos, Paulo Maciel, Igor Costa, Francisco Souza, and
Francisco Airton Silva. Performance Evaluation of Virtual Machines Instantia-
tion in a Private Cloud. In: Proceedings of the IEEE 11th World Congress on
Services (IEEE SERVICES 2015). June 27 - July 2, 2015 - New York - USA
(CAMPOS ELIOMAR; MATOS; SILVA, 2015a).

� Eliomar Campos, Rubens Matos, Paulo Maciel, Francisco Souza, and Francisco
Airton Silva. Stochastic Modeling of Auto Scaling Mechanism in Private Clouds for
Supporting Performance Tunning. In: Proceedings of the 2015 IEEE International
Conference on Systems, Man, and Cybernetics (SMC2015). October 09-12, 2015 -
Hong Kong - China (CAMPOS ELIOMAR; MATOS; SILVA, 2015b).

Other papers to be published:

� Eliomar Campos, Rubens Matos, Paulo Maciel, Francisco Souza, and Francisco
Airton Silva. Performance Evaluation of Auto Scaling Mechanism on Private Cloud.
In Performance Evaluation Review. (to submit)

� Rubens Matos, Eliomar Campos, Paulo Maciel, and Artur Henriques. Performance
Modeling and Sensitivity Analysis of Scalable Web Service on Private Cloud. In
IEEE Transactions on Services. (submitted)

6.2 Future Works

Below, we list the extensions of the current work to be carried out in future work:

6.2. FUTURE WORKS 87

� Performance evaluation considering other factors related to the elasticity mechanisms
such as scaling policy, scaling size, workload, threshold (e.g.: CPU utilization,
memory utilization, requests);

� Performance evaluation considering other important factors related to the VM instan-
tiation such as network bandwidth, disk throughput, type of discs, file systems, and
CPU load/speed;

� Future works may verify the feasibility of EMI compression before transmission to
the node and the subsequent decompression, or considered keeping the EMIs in flash
storage;

� Other studies might evaluate other private cloud environments, such as OpenStack
and OpenNebula;

888888

References

ABDALLAH, H.; HAMZA, M. On the sensitivity analysis of the expected accumulated reward.
Perf. Eval., Amsterdam, The Netherlands, The Netherlands, v.47, n.2, p.163–179, 2002.

AL-HAIDARI, F.; SQALLI, M.; SALAH, K. Impact of CPU Utilization Thresholds and Scaling
Size on Autoscaling Cloud Resources. In: CLOUD COMPUTING TECHNOLOGY AND
SCIENCE (CLOUDCOM), 2013 IEEE 5TH INTERNATIONAL CONFERENCE ON. Anais. . .
[S.l.: s.n.], 2013. v.2, p.256–261.

AMAZON. Amazon Simple Storage Service (S3). Available on
http://aws.amazon.com/s3/.

AMAZON. Amazon Elastic Compute Cloud: user guide. [S.l.: s.n.], 2014.

AMAZON. Auto Scaling. Available on http://aws.amazon.com/autoscaling/.

AMAZON. What is Cloud Computing? Available on
http://aws.amazon.com/what-is-cloud-computing/.

BAUER, E.; ADAMS, R. Reliability and Availability of Cloud Computing. [S.l.]:
Wiley-IEEE Press, 2012.

BLAKE, J. T.; REIBMAN, A. L.; TRIVEDI, K. S. Sensitivity analysis of reliability and
performability measures for multiprocessor systems. In: ACM SIGMETRICS CONFERENCE
ON MEASUREMENT AND MODELING OF COMPUTER SYSTEMS, 1988., New York, NY,
USA. Proceedings. . . ACM, 1988. p.177–186.

BOLCH, G. et al. Queuing Networks and Markov Chains: modeling and performance
evaluation with computer science applications. 2.ed. [S.l.]: John Wiley and Sons, 2001.

BOTRAN, L. et al. A Review of Auto-scaling Techniques for Elastic Applications in Cloud
Environments. Journal of Grid Computing, [S.l.], v.12, n.4, p.559–592, 2014.

CALLOU, G. et al. Estimating sustainability impact of high dependable data centers: a
comparative study between brazilian and us energy mixes. Computing, [S.l.], p.1–34, 2013.

CAMPOS ELIOMAR; MATOS, R. M. P. C. I. S. F.; SILVA, F. A. Performance Evaluation of
Virtual Machines Instantiation in a Private Cloud. In: SERVICES (SERVICES), 2015 IEEE
WORLD CONGRESS ON. Anais. . . [S.l.: s.n.], 2015. p.319–326.

CAMPOS ELIOMAR; MATOS, R. M. P. S. F.; SILVA, F. A. Stochastic Modeling of Auto
Scaling Mechanism in Private Clouds for Supporting Performance Tunning. Systems, Man,
and Cybernetics (SMC), 2015 IEEE International Conference on, [S.l.], 2015.

CARON, E. et al. Auto-scaling, load balancing and monitoring in commercial and
open-source clouds. INRIA. Research report N. 7857. Available on
http://hal.inria.fr/docs/00/66/87/13/PDF/RR-7857.pdf.

DANTAS, J. et al. Models for Dependability Analysis of Cloud Computing Architectures for
Eucalyptus Platform. International Transactions on Systems Science and Applications,
[S.l.], v.8, p.13–25, Dec 2012.

http://aws.amazon.com/s3/
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/what-is-cloud-computing/
http://hal.inria.fr/docs/00/66/87/13/PDF/RR-7857.pdf

REFERENCES 89

EUCALYPTUS. AWS and Eucalyptus Compatibility. [S.l.: s.n.], 2013. Available on
http://www.eucalyptus.com/aws-compatibility.

EUCALYPTUS. Eucalyptus 3.4.0 User Guide. [S.l.: s.n.], 2013.

EUCALYPTUS. What are private clouds? Available on https:
//www.eucalyptus.com/cloud-topics/what-are-private-clouds.

EUCALYPTUS. What is cloud platforms? Available on https:
//www.eucalyptus.com/cloud-topics/what-is-cloud-platforms/.

EUCALYPTUS. What is cloud computing? Available on https://www.eucalyptus.
com/blog/2014/04/21/cloud-101-what-cloud-computing.

EUCALYPTUS. Official Documentation for Eucalyptus Cloud. Available on
https://www.eucalyptus.com/docs/eucalyptus/4.0/.

EUCALYPTUS. Eucalyptus 3: design, build and manage. [S.l.: s.n.], 2014.

EUCALYPTUS. CloudWatch Troubleshooting. Available on https://github.com/
eucalyptus/eucalyptus/wiki/CloudWatch-Troubleshooting/.

EVENTFUL. Overview. Available on http://about.eventful.com/.

FERRARIS, F. et al. Evaluating the Auto Scaling Performance of Flexiscale and Amazon EC2
Clouds. In: SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING
(SYNASC), 2012 14TH INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2012.
p.423–429.

FOURSQUARE. Foursquare. Available on https://foursquare.com/.

FRANK, P. M. Introduction to System Sensitivity Theory. [S.l.]: Academic Press Inc, 1978.

FURHT, B. Cloud Computing Fundamentals. In: FURHT, B.; ESCALANTE, A. (Ed.).
Handbook of Cloud Computing. [S.l.]: Springer US, 2010. p.3–19.

GERMAN, R. Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets. New York, NY, USA: John Wiley & Sons, Inc., 2000.

GOOGLE. Google Maps. Available on http://www.google.com/maps/about/.

GUIMARÃES, A. P.; MACIEL, P. R.; MATIAS JR, R. An Analytical Modeling Framework to
Evaluate Converged Networks Through Business-oriented Metrics. Reliability Engineering &
System Safety, [S.l.], 2013.

GUSEV, M. et al. CPU Utilization while Scaling Resources in the Cloud. In: CLOUD
COMPUTING 2013, THE FOURTH INTERNATIONAL CONFERENCE ON CLOUD
COMPUTING, GRIDS, AND VIRTUALIZATION. Anais. . . [S.l.: s.n.], 2013. p.131–137.

HAMBY, D. M. A Review Of Techniques For Parameter Sensitivity Analysis Of Environmental
Models. Environmental Monitoring and Assessment, [S.l.], p.135–154, 1994.

HAVERKORT, B. R. Lectures on formal methods and performance analysis. New York,
NY, USA: Springer-Verlag New York, Inc., 2002. p.38–83.

http://www.eucalyptus.com/aws-compatibility
https://www.eucalyptus.com/cloud-topics/what-are-private-clouds
https://www.eucalyptus.com/cloud-topics/what-are-private-clouds
https://www.eucalyptus.com/cloud-topics/what-is-cloud-platforms/
https://www.eucalyptus.com/cloud-topics/what-is-cloud-platforms/
https://www.eucalyptus.com/blog/2014/04/21/cloud-101-what-cloud-computing
https://www.eucalyptus.com/blog/2014/04/21/cloud-101-what-cloud-computing
https://www.eucalyptus.com/docs/eucalyptus/4.0/
https://github.com/eucalyptus/eucalyptus/wiki/CloudWatch-Troubleshooting/
https://github.com/eucalyptus/eucalyptus/wiki/CloudWatch-Troubleshooting/
http://about.eventful.com/
https://foursquare.com/
http://www.google.com/maps/about/

REFERENCES 90

HOFFMAN, F.; GARDNER, R. Evaluation of Uncertainties in Environmental Radiological
Assessment Models. In: TILL, J.; MEYER, H. (Ed.). Radiological Assessments: a textbook on
environmental dose assessment. Washington, DC: U.S. Nuclear Regulatory Commission, 1983.
Report No. NUREG/CR-3332.

JAIN, R. The Art Of Computer Systems Performance Analysis: techniques for experimental
measurement, simulation and modeling. [S.l.]: Wiley India Pvt. Ltd., 2008.

JMETER, A. Overview. Available on http://jmeter.apache.org/index.html.

KLEINROCK, L. Queueing Systems. New York: Wiley, 1975. v.1.

KOHLAS, J. Numerical computation of mean passage times and absorption probabilities in
Markov and semi-Markov models. Zeitschrift für Operations Research, [S.l.], v.30, n.5,
p.A197–A207, 1986.

LAST.FM. Last.fm. Available on http://www.lastfm.com/.

LEITNER, P.; HUMMER, W.; DUSTDAR, S. Cost-Based Optimization of Service
Compositions. Services Computing, IEEE Transactions on, [S.l.], v.6, n.2, p.239–251,
Nov. 2011.

LI, Y.; FANG, J.; XIONG, J. A Context-Aware Services Mash-Up System. In: SEVENTH
INTERNATIONAL CONFERENCE ON GRID AND COOPERATIVE COMPUTING, 2008.,
Washington, DC, USA. Proceedings. . . IEEE Computer Society, 2008. p.707–712. (GCC ’08).

LIN, C.-C. et al. Automatic Resource Scaling Based on Application Service Requirements. In:
CLOUD COMPUTING (CLOUD), 2012 IEEE 5TH INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2012. p.941–942.

LOOKBUSY. Lookbusy – a synthetic load generator. 2013.

MA, H. et al. QoS-Driven Service Composition with Reconfigurable Services. Services
Computing, IEEE Transactions on, [S.l.], v.6, n.1, p.20–34, 2013.

MACIEL, P. et al. Performance and Dependability in Service Computing: concepts,
techniques and research directions. [S.l.]: IGI Global, 2011.

MARSAN, M. A.; CONTE, G.; BALBO, G. A class of generalized stochastic Petri nets for the
performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst., New York,
NY, USA, v.2, p.93–122, May 1984.

MARSAN, M. A. et al. Modelling with Generalized Stochastic Petri Nets. 1st.ed. New York,
NY, USA: John Wiley & Sons, Inc., 1994.

MATOS, R. et al. Sensitivity analysis of a hierarchical model of mobile cloud computing.
Simulation Modelling Practice and Theory, [S.l.], v.50, p.151–164, 2014.

MATOS, R.; MACIEL, P.; SILVA, R. QoS-driven optimisation of composite web services: an
approach based on grasp and analytical models. International Journal of Web and Grid
Services, [S.l.], v.9, n.3, p.304–321, 2013.

MATOS, R. S. et al. Sensitivity analysis of server virtualized system availability. IEEE
Transactions on Reliability, [S.l.], v.61, n.4, p.994–1006, 2012.

http://jmeter.apache.org/index.html
http://www.lastfm.com/

REFERENCES 91

MELL, P.; GRANCE, T. The NIST definition of cloud computing. , [S.l.], 2011.

MINITAB, I. Meet Minitab 16. 2013.

MOLLOY, M. K. Performance Analysis Using Stochastic Petri Nets. IEEE Trans. Comput.,
Washington, DC, USA, v.31, p.913–917, September 1982.

MONTGOMERY, D. C. Design and Analysis of Experiments. 8th.ed. New York: John Wiley
and Sons, 2012.

MUPPALA, J. K.; TRIVEDI, K. S. GSPN models: sensitivity analysis and applications. In:
ACM-SE 28: PROCEEDINGS OF THE 28TH ANNUAL SOUTHEAST REGIONAL
CONFERENCE, New York, NY, USA. Anais. . . ACM, 1990. p.25–33.

MURATA, T. Petri nets: properties, analysis and applications. Proceedings of the IEEE, [S.l.],
v.77, n.4, p.541–580, Apr 1989.

NIST. NIST Cloud Computing Standards Roadmap. 2013.

OU, Y.; DUGAN, J. B. Approximate Sensitivity Analysis for Acyclic Markov Reliability
Models. IEEE Trans. on Reliab., [S.l.], n.2, June 2003.

REN, Y. et al. Reliability Prediction of Web Service Composition Based on DTMC. In: THIRD
IEEE INTERNATIONAL CONFERENCE ON SECURE SOFTWARE INTEGRATION AND
RELIABILITY IMPROVEMENT, 2009., Washington, DC, USA. Proceedings. . . IEEE
Computer Society, 2009. p.369–375. (SSIRI ’09).

ROSS, S. Introductory Statistics. [S.l.]: Elsevier Science, 2010.

SATO, N.; TRIVEDI, K. S. Stochastic Modeling of Composite Web Services for Closed-Form
Analysis of Their Performance and Reliability Bottlenecks. In: SERVICE-ORIENTED
COMPUTING, 5., Berlin, Heidelberg. Proceedings. . . Springer-Verlag, 2007. p.107–118.
(ICSOC ’07).

SILVA, A. et al. Avaliação de Desempenho da Composição de Web Services usando Redes de
Petri (in Portuguese). In: PROCEEDING OF THE BRAZILIAN SYMPOSIUM ON
COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS - SBRC 2006, Curitiba. Anais. . .
[S.l.: s.n.], 2006.

SILVA, B. et al. ASTRO: an integrated environment for dependability and sustainability
evaluation. Sustainable Computing: Informatics and Systems, [S.l.], v.3, n.1, p.1–17, 2013.

SOTOMAYOR, B. et al. Virtual Infrastructure Management in Private and Hybrid Clouds.
Internet Computing, IEEE, [S.l.], v.13, n.5, p.14–22, Sept 2009.

SOUSA, E. et al. Evaluating Eucalyptus Virtual Machine Instance Types: a study considering
distinct workload demand. In: CLOUD COMPUTING 2012, THE THIRD INTERNATIONAL
CONFERENCE ON CLOUD COMPUTING, GRIDS, AND VIRTUALIZATION. Anais. . .
[S.l.: s.n.], 2012. p.130–135.

STEWART, W. J. Introduction to the Numerical Solution of Markov Chains. [S.l.]:
Princeton University Press, 1994.

REFERENCES 92

SULEIMAN, B.; VENUGOPAL, S. Modeling Performance of Elasticity Rules for Cloud-Based
Applications. In: ENTERPRISE DISTRIBUTED OBJECT COMPUTING CONFERENCE
(EDOC), 2013 17TH IEEE INTERNATIONAL. Anais. . . [S.l.: s.n.], 2013. p.201–206.

TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing, and Computer
Science Applications. New York: John Wiley and Sons, 2001.

VOAS, J.; ZHANG, J. Cloud Computing: new wine or just a new bottle? IT Professional, [S.l.],
v.11, n.2, p.15–17, March 2009.

WATSON J.F., I.; DESROCHERS, A. Applying generalized stochastic Petri nets to
manufacturing systems containing nonexponential transition functions. Systems, Man and
Cybernetics, IEEE Transactions on, [S.l.], v.21, n.5, p.1008–1017, Sep 1991.

YANG, J. et al. Workload Predicting-Based Automatic Scaling in Service Clouds. In: CLOUD
COMPUTING (CLOUD), 2013 IEEE SIXTH INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2013. p.810–815.

YIN, B. et al. Sensitivity analysis and estimates of the performance for M/G/1 queueing systems.
Perform. Eval., Amsterdam, The Netherlands, The Netherlands, v.64, n.4, p.347–356, 2007.

ZHANG, Q.; CHENG, L.; BOUTABA, R. Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, [S.l.], v.1, n.1, p.7–18, 2010.

ZHONG, D.; QI, Z.; XU, X. Petri Net, Theory and Applications. [S.l.]: I-Tech Education and
Publishing, 2008. Available on: http:
//www.intechopen.com/books/petri_net_theory_and_applications.

http://www.intechopen.com/books/petri_net_theory_and_applications
http://www.intechopen.com/books/petri_net_theory_and_applications

Appendix

949494

A
Script to Measure Auto Scaling Monitoring
Time

1 #!/bin/bash

2 lookbusy(){

3 beginTimeMetric=$(($(date +%s%N)/1000000))

4 ssh -i /home/frontend/Downloads/acesso.pem 192.168.0.171 "

lookbusy -c 50" &

5 #checking VM Pending

6 verifyVmPending $beginTimeMetric

7 }

8 verifyVmPending(){

9 booting=TRUE

10 while [$booting = TRUE]

11 do

12 pending=‘euca-describe-instances | grep pending | wc -l‘

13 if [$pending -gt 0]

14 then

15 beginTimeVmPending=$(($(date +%s%N)/1000000))

16 ssh -i /home/frontend/Downloads/acesso.pem 192.168.0.171 "

killall -9 lookbusy"

17 durationDetectionAction=$(($beginTimeVmPending-

$beginTimeMetric))

18 echo $durationDetectionAction >> timess.txt

19 booting=FALSE

20 fi

21 done

22 }

23 #****MAIN****

24 read -p "Number of samples: " numSamples

25 num=0

26 while [$num -lt $numSamples]

27 do

95

28 #checks before if there are any VM pending and if the alarm status

is OK, only to then run the next result

29 booting=TRUE

30 while [$booting = TRUE]

31 do

32 pending=‘euca-describe-instances | grep pending | wc -l‘

33 statusAlarm=‘euwatch-describe-alarms | grep ALARM | wc -l‘

34 if [$pending -eq 0] && [$statusAlarm -eq 0]

35 then

36 euscale-set-desired-capacity scale -c 9

37 #invokes the synthetic load generator lookbusy

38 lookbusy

39 booting=FALSE

40 fi

41 done

42 #to always keep the number of instances required to be monitored,

in this case 1

43 euscale-set-desired-capacity scale -c 1

44 #wait for the alarm to return to its status OK and only then run

the next result

45 booting=TRUE

46 while [$booting = TRUE]

47 do

48 statusAlarm=‘euwatch-describe-alarms | grep ALARM | wc -l‘

49 if [$sta tusAlarm -eq 0]

50 then

51 booting=FALSE

52 fi

53 done

54 #wait some random time to start new trigger the load generator

lookbusy

55 sleeping=$((($RANDOM % 10)*60))

56 sleep $sleeping

57 num=$(($num+1))

58 done

969696

B
Script to Measure VM Instantiation Time

1 #!/bin/bash

2 killVMs(){

3 instances=‘euca-describe-instances | grep INSTANCE | awk ’{print

$2}’‘

4 euca-terminate-instances $instances

5 sleep 10

6 booting=TRUE

7 while [$booting = TRUE] do

8 running=‘euca-describe-instances | grep running | wc -l‘

9 shutting=‘euca-describe-instances | grep shutting-down | wc -l‘

10 kvm=‘ssh 192.168.0.5 ps aux | grep /usr/libexec/qemu-kvm | wc -

l‘

11 if [$running -eq 0] && [$shutting -eq 0] then

12 if [$kvm -eq 0] then

13 instances=‘euca-describe-instances | grep INSTANCE | awk

’{print $2}’‘

14 euca-terminate-instances $instances

15 sleep 10

16 booting=FALSE

17 fi fi done

18 }

19
20 verifyVmUp(){

21 booting=TRUE

22 while [$booting = TRUE] do

23 running=‘euca-describe-instances | grep running | wc -l‘

24 if [$running -gt 0] then

25 beginTimeUp=$(($(date +%s%N)/1000000))

26 echo "Begin Time VM UP: "$beginTimeUp >> log_times.txt

27 duration_kvm=$(($beginTimeUp-$beginTimeKvm))

28 echo "Duration Preparation KVM: "$duration_kvm >> log_times.

txt

29 booting=FALSE

30 fi done

97

31 }

32
33 verifyKvm(){

34 c=TRUE

35 while [$c = TRUE] do

36 filter=‘ssh 192.168.0.5 ps aux | grep /usr/libexec/qemu-kvm | wc

-l‘

37 if [$filter -eq 1] then

38 beginTimeKvm=$(($(date +%s%N)/1000000))

39 echo "Begin Time KVM: "$beginTimeKvm >> log_times.txt

40 duration_download=$(($beginTimeKvm-$beginTimeInstance))

41 echo "Duration Download: "$duration_download >> log_times.txt

42 c=FALSE

43 fi done

44 echo "Checking VM UP" >> log_times.txt

45 verifyVmUp $beginTimeKvm

46 }

47
48 instancesVms(){

49 beginTime=$(($(date +%s%N)/1000000))

50 echo "Begin Time: "$beginTime >> log_times.txt

51 echo "Instantiating" >> log_times.txt

52 euca-run-instances -t m3.xlarge -z CLUSTER01 -k default emi-4

F4B3CE2

53 beginTimeInstance=$(($(date +%s%N)/1000000))

54 echo "Begin Time Instance CC: "$beginTimeInstance >> log_times.txt

55 duration_instance=$(($beginTimeInstance-$beginTime))

56 echo "Duration Creation Instance CC: "$duration_instance >>

log_times.txt

57 echo "Checking if the KVM started" >> log_times.txt

58 verifyKvm $beginTimeInstance

59 }

60
61 #************ MAIN ************

62 read -p "Number of samples: " numSamples

63 num=0

64 while [$num -lt $numSamples] do

65 echo "Sample Number: "$(($num+1)) >> log_times.txt

66 killVMs

67 instancesVms

68 echo $duration_instance";"$duration_download";"$duration_kvm >>

durations.txt

69 echo "END" >> log_times.txt

70 num=$(($num+1))

71 done

	Introduction
	Motivation and Justification
	Objectives
	Related works
	Structure of the dissertation

	Background
	Cloud Computing
	Essential Characteristics
	Service Models
	Deployment Models

	Performance Evaluation of Systems
	Measurement
	Continuous Time Markov Chains
	Stochastic Petri Nets
	Parametric Sensitivity Analysis

	Auto-Scalable Private Cloud Environment
	Eucalyptus Private Cloud
	Scalable Composite Web Service Architectures

	Methodology and Models
	Methodology
	SPN Main Model for Scalable Composite Web Service
	CTMC Submodel for Mashup Application
	CTMC Submodel for VM Instantiation
	CTMC Model for Auto Scaling Process

	Case Studies
	Case Study One
	DoE for Auto Scaling Monitoring
	DoE for VM Instantiation Process

	Case Study Two
	Case Study Three
	Case Study Four

	Conclusion
	Statement of the Contributions
	Future Works

	References
	Appendix
	Script to Measure Auto Scaling Monitoring Time
	Script to Measure VM Instantiation Time

